Difference between revisions of "009C Sample Midterm 3, Problem 1"

From Math Wiki
Jump to navigation Jump to search
m
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<span class="exam">Test if the following sequence <math  style="vertical-align: -10%">{a_n}</math> converges or diverges. If it converges, also find the limit of the sequence.
+
<span class="exam">Test if the following sequence <math  style="vertical-align: -10%">{a_n}</math> converges or diverges.  
  
::<math>a_{n}=\left(\frac{n-7}{n}\right)^{1/n}.</math>
+
<span class="exam">If it converges, also find the limit of the sequence.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
::<math>a_{n}=\left(\frac{n-7}{n}\right)^{\frac{1}{n}}</math>
! Foundations: &nbsp;
 
|-
 
|This a common question, and is related to the fact that
 
|-
 
|
 
::<math style="vertical-align: 0%">\lim_{x\rightarrow\infty}\left(1+\frac{\alpha}{x}\right)^{x}\ =\ e^{\alpha}.</math>
 
|-
 
|In such a limit, the argument <math style="vertical-align: -22%">1+\alpha /x</math> tends to one as <math style="vertical-align: 0%">x</math> gets large, while we are raising that argument to an increasing power. Neither one really "wins", so we end up with a finite limit that is neither zero nor infinity.
 
|-
 
|On the other hand, in the exam problem the argument <math style="vertical-align: -22%">(n-7)/n</math> is always smaller than one, but tends to one as <math style="vertical-align: 0%">n</math> gets large, while the exponent <math style="vertical-align: -25%">1/n</math> tends to zero. These do not disagree, so the limit should be one, but we need to prove it.
 
|-
 
|Any time you have a function raised to a function, we need to use natural log and take advantage of the log rule:
 
|-
 
|
 
::<math style="vertical-align: 0%">\ln\left(a^{b}\right)=b\ln(a).</math>
 
|-
 
|For example, to find <math style="vertical-align: -78%">\lim_{x\rightarrow\infty}\left(1-\frac{1}{x}\right)^{x}</math>, you could begin by saying: Let <math style="vertical-align: -75%">L=\lim_{x\rightarrow\infty}\left(1-\frac{1}{x}\right)^{x}.</math>
 
Then
 
|-
 
|
 
::<math style="vertical-align: 0%">\ln L=\ln\left[\lim_{x\rightarrow\infty}\left(1-\frac{1}{x}\right)^{x}\right]=\lim_{x\rightarrow\infty}\ln\left[\left(1-\frac{1}{x}\right)^{x}\right],</math>
 
  
where we are allowed to pass the log through the limit because natural log is continuous. But by log rules,
+
<hr>
|-
 
|
 
::<math style="vertical-align: 0%">\ln\left[\left(1-\frac{1}{x}\right)^{x}\right]=x\ln\left(1-\frac{1}{x}\right).</math>
 
|-
 
|Thus
 
|-
 
|
 
::<math style="vertical-align: 0%">\begin{array}{rcl}
 
\lim_{x\rightarrow\infty}\ln\left[\left(1-\frac{1}{x}\right)^{x}\right] & = & \lim_{x\rightarrow\infty}x\ln\left(1-\frac{1}{x}\right),\\
 
& = & \lim_{x\rightarrow\infty}\frac{\ln\left(1-\frac{1}{x}\right)}{\frac{1}{x}}\\
 
& \overset{l'H}{=} & \lim_{x\rightarrow\infty}\frac{\frac{x}{x-1}\cdot\left(-\frac{1}{x}\right)'}{\left(\frac{1}{x}\right)'}\\
 
& = & -1.
 
\end{array}</math>
 
  
Note that <math style="vertical-align: -100%">\lim_{x\rightarrow\infty}\frac{\ln\left(1-\frac{1}{x}\right)}{\frac{1}{x}}=\frac{0}{0},</math>
+
[[009C Sample Midterm 3, Problem 1 Solution|'''<u>Solution</u>''']]
&thinsp;so we can apply l'H&ocirc;pital's rule. Finally, since <math style="vertical-align: -60%">\ln L=-1,\,\,L=\frac{1}{e}.</math>  
+
 
|-
+
 
|Again, such a technique is not required for this particular problem, as the exponent tends to zero.  But the technique is common enough on exams to justify providing an example.
+
[[009C Sample Midterm 3, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!'''Solution:'''&nbsp;
 
|-
 
|Following the procedure outlined in Foundations, let <math style="vertical-align: -75%">L=\lim_{n\rightarrow\infty}\left(\frac{n-7}{n}\right)^{1/n}.</math> Then
 
|-
 
|
 
::<math style="vertical-align: 0%">\begin{array}{rcl}
 
\ln L & = & \displaystyle{ \ln\left(\lim_{n\rightarrow\infty}\left[\left(\frac{n-7}{n}\right)^{1/n}\right]\right)}\\
 
\\
 
& = &\displaystyle{ \lim_{n\rightarrow\infty}\ln\left[\left(\frac{n-7}{n}\right)^{1/n}\right]}\\
 
\\
 
&  & \displaystyle{ \lim_{n\rightarrow\infty}\left[\frac{1}{n}\cdot\ln\left(\frac{n-7}{n}\right)\right]}\\
 
\\
 
& = & 0\cdot\ln(1)\\
 
\\
 
& = & 0.
 
\end{array}</math>
 
|-
 
|<br>Thus, <math style="vertical-align: -5%">L=e^{0}=1.</math>  Also, most teachers would require you to mention that natural log is continuous as justification for passing the limit through it.
 
|}
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|The limit of the sequence is <math style="vertical-align: -5%">e^{0}=1.</math>
 
|}
 
  
 
[[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 08:41, 28 November 2017

Test if the following sequence converges or diverges.

If it converges, also find the limit of the sequence.


Solution


Detailed Solution


Return to Sample Exam