Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Compute the following integrals: ::<span class="exam">a) <math>\int x^2\sin (x^3) ~dx</math> ::<span class="exam">b) <math>\int_{-\frac{\pi}{4}}^{\frac{\...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<span class="exam"> Compute the following integrals:
+
<span class="exam"> Find a curve &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; with the following properties:  
  
::<span class="exam">a) <math>\int x^2\sin (x^3) ~dx</math>
+
<span class="exam">(i) &nbsp; <math style="vertical-align: -5px">f''(x)=6x</math>  
::<span class="exam">b) <math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx</math>
 
  
 +
<span class="exam">(ii) &nbsp; Its graph passes through the point &nbsp;<math style="vertical-align: -5px">(0,1)</math>&nbsp; and has a horizontal tangent there.
 +
<hr>
 +
[[009B Sample Midterm 3, Problem 3 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|How would you integrate <math style="vertical-align: -5px">2x(x^2+1)^3~dx?</math>
 
|-
 
|
 
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -3px">u=x^2+1.</math> Then, <math style="vertical-align: -1px">du=2x~dx.</math> Thus,
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\
 
&&\\
 
& = & \displaystyle{\frac{u^4}{4}+C}\\
 
&& \\
 
& = & \displaystyle{\frac{(x^2+1)^4}{4}+C.}\\
 
\end{array}</math>
 
|}
 
  
'''Solution:'''
+
[[009B Sample Midterm 3, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -1px">u=x^3.</math> Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math>
 
|-
 
|Therefore, we have
 
|-
 
|
 
::<math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We integrate to get
 
|-
 
|
 
::::<math>\begin{array}{rcl}
 
\displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\
 
&&\\
 
& = & \displaystyle{\frac{-1}{3}\cos(x^3)+C.}\\
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Again, we proceed using u substitution. Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math>
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.
 
|-
 
|We have <math style="vertical-align: -15px">u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -15px">u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, we get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\
 
&&\\
 
& = & \displaystyle{\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}}\\
 
&&\\
 
& = & \displaystyle{0.} \\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)''' <math>\frac{-1}{3}\cos(x^3)+C</math>
 
|-
 
|&nbsp;&nbsp; '''(b)''' <math>0</math>
 
|}
 
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:16, 23 November 2017

Find a curve    with the following properties:

(i)  

(ii)   Its graph passes through the point    and has a horizontal tangent there.


Solution


Detailed Solution


Return to Sample Exam