Difference between revisions of "009B Sample Midterm 1, Problem 3"
Jump to navigation
Jump to search
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> A population grows at a rate |
− | ::< | + | ::<math>P'(t)=500e^{-t}</math> |
− | |||
+ | <span class="exam">where <math style="vertical-align: -5px">P(t)</math> is the population after <math style="vertical-align: 0px">t</math> months. | ||
− | + | <span class="exam">(a) Find a formula for the population size after <math style="vertical-align: 0px">t</math> months, given that the population is <math style="vertical-align: 0px">2000</math> at <math style="vertical-align: 0px">t=0.</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''Solution | + | <span class="exam">(b) Use your answer to part (a) to find the size of the population after one month. |
+ | <hr> | ||
+ | [[009B Sample Midterm 1, Problem 3 Solution|'''<u>Solution</u>''']] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[009B Sample Midterm 1, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']] | |
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 10:04, 20 November 2017
A population grows at a rate
where is the population after months.
(a) Find a formula for the population size after months, given that the population is at
(b) Use your answer to part (a) to find the size of the population after one month.