Difference between revisions of "009B Sample Midterm 1"
(→ Problem 5 ) |
(→ Problem 3 ) |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | '''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the''' '''<span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | + | '''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.''' |
+ | |||
+ | '''Click on the''' '''<span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | ||
<div class="noautonum">__TOC__</div> | <div class="noautonum">__TOC__</div> | ||
== [[009B_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | == [[009B_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> Let <math style="vertical-align: -5px">f(x)=1-x^2</math>. |
+ | |||
+ | <span class="exam">(a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | ||
+ | |||
+ | <span class="exam">(b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | ||
− | + | <span class="exam">(c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. | |
− | |||
== [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam">Evaluate the indefinite and definite integrals. |
− | + | <span class="exam">(a) <math>\int x^2\sqrt{1+x^3}~dx</math> | |
+ | <span class="exam">(b) <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math> | ||
== [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | == [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
+ | <span class="exam"> A population grows at a rate | ||
+ | |||
+ | ::<math>P'(t)=500e^{-t}</math> | ||
+ | |||
+ | <span class="exam">where <math style="vertical-align: -5px">P(t)</math> is the population after <math style="vertical-align: 0px">t</math> months. | ||
+ | |||
+ | <span class="exam">(a) Find a formula for the population size after <math style="vertical-align: 0px">t</math> months, given that the population is <math style="vertical-align: 0px">2000</math> at <math style="vertical-align: 0px">t=0.</math> | ||
+ | |||
+ | <span class="exam">(b) Use your answer to part (a) to find the size of the population after one month. | ||
+ | |||
+ | == [[009B_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
<span class="exam"> Evaluate the indefinite and definite integrals. | <span class="exam"> Evaluate the indefinite and definite integrals. | ||
− | + | <span class="exam">(a) <math>\int x^2 e^x~dx</math> | |
− | + | ||
+ | <span class="exam">(b) <math>\int_{1}^{e} x^3\ln x~dx</math> | ||
− | == [[009B_Sample Midterm 1, | + | == [[009B_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == |
<span class="exam"> Evaluate the integral: | <span class="exam"> Evaluate the integral: | ||
::<math>\int \sin^3x \cos^2x~dx</math> | ::<math>\int \sin^3x \cos^2x~dx</math> | ||
− | |||
− | |||
− | + | ||
− | |||
− | |||
'''Contributions to this page were made by [[Contributors|Kayla Murray]]''' | '''Contributions to this page were made by [[Contributors|Kayla Murray]]''' |
Latest revision as of 10:04, 20 November 2017
This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Let .
(a) Compute the left-hand Riemann sum approximation of with boxes.
(b) Compute the right-hand Riemann sum approximation of with boxes.
(c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Problem 2
Evaluate the indefinite and definite integrals.
(a)
(b)
Problem 3
A population grows at a rate
where is the population after months.
(a) Find a formula for the population size after months, given that the population is at
(b) Use your answer to part (a) to find the size of the population after one month.
Problem 4
Evaluate the indefinite and definite integrals.
(a)
(b)
Problem 5
Evaluate the integral:
Contributions to this page were made by Kayla Murray