Difference between revisions of "009A Sample Final A, Problem 2"

From Math Wiki
Jump to navigation Jump to search
m
m
Line 13: Line 13:
 
|These are problems involving some more advanced rules of differentiation.  In particular, they use
 
|These are problems involving some more advanced rules of differentiation.  In particular, they use
 
|-
 
|-
|'''The Chain Rule:''' If ''f'' and ''g'' are differentiable functions, then
+
|'''The Chain Rule:''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -20%;">g</math> are differentiable functions, then
 
|-
 
|-
  
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(f\circ g)'(x) = f'(g(x))\cdot g'(x).</math>
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(f\circ g)'(x) = f'(g(x))\cdot g'(x).</math>
 
|-
 
|-
|<br>'''The Product Rule:'''  If ''f'' and ''g'' are differentiable functions, then
+
|<br>'''The Product Rule:'''  If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -20%;">g</math> are differentiable functions, then
 
|-
 
|-
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math>
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math>
 
|-
 
|-
|<br>'''The Quotient Rule:'''  If ''f'' and ''g'' are differentiable functions and ''g''(''x'') &ne; 0, then
+
|<br>'''The Quotient Rule:'''  If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -20%;">g</math> are differentiable functions and <math style="vertical-align: -25%;">g(x) \neq 0</math>, then
 
|-
 
|-
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>\left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. </math>
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>\left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. </math>
Line 47: Line 47:
 
!Part (b): &nbsp;
 
!Part (b): &nbsp;
 
|-
 
|-
|Both parts (b) and (c) attempt to confuse you by including the familiar constants ''e'' and &pi;. Remember - they are just constants, like 10 or 1/2.  With that in mind, we really just need to apply the chain rule to find
+
|Both parts (b) and (c) attempt to confuse you by including the familiar constants <math style="vertical-align: 0%;">e</math> and <math style="vertical-align:  0%;">\pi</math>. Remember - they are just constants, like 10 or 1/2.  With that in mind, we really just need to apply the chain rule to find
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>g'(x)=0-2\sin\left(\sqrt{x-2}\right)\cdot\frac{1}{2}\cdot(x-2)^{-1/2}\cdot1=\,-\frac{\sin\left(\sqrt{x-2}\right)}{\sqrt{x-2}}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>g'(x)=0-2\sin\left(\sqrt{x-2}\right)\cdot\frac{1}{2}\cdot(x-2)^{-1/2}\cdot1=\,-\frac{\sin\left(\sqrt{x-2}\right)}{\sqrt{x-2}}.</math>

Revision as of 21:34, 26 March 2015

2. Find the derivatives of the following functions:
   (a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{3x^{2}-5}{x^{3}-9}.}

   (b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\pi+2\cos(\sqrt{x-2}).}

   (c)
 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=4x\sin(x)+e(x^{2}+2)^{2}.}

Foundations:  
These are problems involving some more advanced rules of differentiation. In particular, they use
The Chain Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions, then

     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f\circ g)'(x) = f'(g(x))\cdot g'(x).}

The Product Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions, then

     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).}

The Quotient Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) \neq 0} , then

     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. }

 Solution:

Part (a):  
We need to use the quotient rule:
     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x) = \frac {\left(3x^{2}-5\right)' \cdot \left(x^{3}-9 \right)- \left( 3x^{2}-5 \right) \cdot \left( x^{3}-9\right)'}{\left(x^{3}-9\right)^2} }
                
                 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{6x^{4}-54x-9x^{4}+15x^{2}}{(x^{3}-9)^{2}}}
                 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{-3x^{4}+15x^{2}-54x}{(x^{3}-9)^{2}}.}
Part (b):  
Both parts (b) and (c) attempt to confuse you by including the familiar constants Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} . Remember - they are just constants, like 10 or 1/2. With that in mind, we really just need to apply the chain rule to find
          Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=0-2\sin\left(\sqrt{x-2}\right)\cdot\frac{1}{2}\cdot(x-2)^{-1/2}\cdot1=\,-\frac{\sin\left(\sqrt{x-2}\right)}{\sqrt{x-2}}.}
Part (c):  
We can choose to expand the second term, finding
          Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e(x^{2}+2)^{2}=ex^{4}+4ex^{2}+4e.}
We then only require the product rule on the first term, so
          Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=(4x)'\cdot\sin(x)+4x\cdot(\sin(x))'+\left(ex^{4}+4ex^{2}+4e\right)'=4\sin(x)+4x\cos(x)+4ex^{3}+8ex.}

Return to Sample Exam