Difference between revisions of "009B Sample Midterm 3, Problem 4"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Evaluate the integral: ::<math>\int \sin (\ln x)~dx.</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations:   |- |'...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Evaluate the integral:
+
<span class="exam"> Compute the following integrals:
  
::<math>\int \sin (\ln x)~dx.</math>
+
<span class="exam">(a) &nbsp; <math>\int x^2\sin (x^3) ~dx</math>  
  
 +
<span class="exam">(b) &nbsp; <math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx</math>
 +
<hr>
 +
[[009B Sample Midterm 3, Problem 4 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int vdu.</math>
 
|-
 
|'''2.''' How could we break up <math style="vertical-align: -5px">\sin (\ln x)~dx</math> into <math style="vertical-align: -1px">u</math> and <math style="vertical-align: -1px">dv?</math>
 
|-
 
|
 
::Notice that <math style="vertical-align: -5px">\sin (\ln x)</math> is one term. So, we need to let <math style="vertical-align: -5px">u=\sin (\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math>
 
|}
 
  
'''Solution:'''
+
[[009B Sample Midterm 3, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using integration by parts.
 
|-
 
|Let <math style="vertical-align: -6px">u=\sin(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=\cos(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math>
 
|-
 
|Therefore, we get
 
|-
 
|
 
::<math>\int \sin (\ln x)~dx=x\sin(\ln x)-\int \cos(\ln x)~dx.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we need to use integration by parts again.
 
|-
 
|Let <math style="vertical-align: -6px">u=\cos(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=-\sin(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math>
 
|-
 
|Therfore, we get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int \sin (\ln x)~dx} & = & \displaystyle{x\sin(\ln x)-\bigg(x\cos(\ln x)+\int \sin(\ln x)~dx\bigg)}\\
 
&&\\
 
& = & \displaystyle{x\sin(\ln x)-x\cos(\ln x)-\int \sin(\ln x)~dx.}\\
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Notice that the integral on the right of the last equation is the same integral that we had at the beginning.
 
|-
 
|So, if we add the integral on the right to the other side of the equation, we get
 
|-
 
|
 
::<math>2\int \sin(\ln x)~dx=x\sin(\ln x)-x\cos(\ln x).</math>
 
|-
 
|Now, we divide both sides by 2 to get
 
|-
 
|
 
::<math>\int \sin(\ln x)~dx=\frac{x\sin(\ln x)}{2}-\frac{x\cos(\ln x)}{2}.</math>
 
|-
 
|Thus, the final answer is
 
|-
 
|
 
::<math>\int \sin(\ln x)~dx=\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; <math>\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C</math>
 
|}
 
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:35, 12 November 2017

Compute the following integrals:

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam