Difference between revisions of "009B Sample Midterm 3, Problem 1"

From Math Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
[[File:9B_SM3_1_GP.png|right|375px]]
 
 
 
<span class="exam">Divide the interval &nbsp;<math style="vertical-align: -5px">[0,\pi]</math>&nbsp; into four subintervals of equal length &nbsp; <math>\frac{\pi}{4}</math> &nbsp; and compute the right-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">y=\sin (x).</math>
 
<span class="exam">Divide the interval &nbsp;<math style="vertical-align: -5px">[0,\pi]</math>&nbsp; into four subintervals of equal length &nbsp; <math>\frac{\pi}{4}</math> &nbsp; and compute the right-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">y=\sin (x).</math>
 +
<hr>
 +
[[009B Sample Midterm 3, Problem 1 Solution|'''<u>Solution</u>''']]
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009B Sample Midterm 3, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Foundations: &nbsp;
 
|-
 
|
 
'''1.''' The height of each rectangle in the right-hand Riemann sum
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; is given by choosing the right endpoint of the interval.
 
|-
 
|
 
'''2.''' See the Riemann sums (insert link) for more information.
 
|}
 
 
 
 
 
'''Solution:'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -5px">f(x)=\sin(x).</math>  
 
|-
 
|Each interval has length &nbsp;<math>\frac{\pi}{4}.</math>
 
|-
 
|Therefore, the right-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on the interval &nbsp;<math style="vertical-align: -5px">[0,\pi]</math>&nbsp; is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Thus, the right-endpoint Riemann sum is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{4}(\sqrt{2}+1).}\\
 
\end{array}</math>
 
|}
 
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; &nbsp; &nbsp; <math>\frac{\pi}{4}(\sqrt{2}+1)</math>
 
|}
 
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:32, 12 November 2017

Divide the interval    into four subintervals of equal length     and compute the right-endpoint Riemann sum of  


Solution


Detailed Solution


Return to Sample Exam