Difference between revisions of "009B Sample Midterm 2, Problem 1"

From Math Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
<span class="exam"> This problem has three parts:
 
<span class="exam"> This problem has three parts:
  
<span class="exam">(a) State the Fundamental Theorem of Calculus.
+
<span class="exam">(a) State the both parts of the fundamental theorem of calculus.
  
<span class="exam">(b) Compute &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt.</math>
+
<span class="exam">(b) Compute &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math>.
  
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx.</math>
+
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx</math>.
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Midterm 2, Problem 1 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' What does Part 1 of the Fundamental Theorem of Calculus say about &nbsp;<math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Part 1 of the Fundamental Theorem of Calculus says that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math>
 
|-
 
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about &nbsp;<math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">a,b</math>&nbsp; are constants?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Part 2 of the Fundamental Theorem of Calculus says that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">F</math>&nbsp; is any antiderivative of &nbsp;<math style="vertical-align: 0px">\sec^2x.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Midterm 2, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|The Fundamental Theorem of Calculus has two parts.
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|Let &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: 0px">F</math>&nbsp; is a differentiable function on &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|Let &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: 0px">F</math>&nbsp; be any antiderivative of &nbsp;<math style="vertical-align: -4px">f.</math>
 
|-
 
|Then,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt.</math>
 
|-
 
|The problem is asking us to find &nbsp;<math style="vertical-align: -5px">F'(x).</math>
 
|-
 
|Let &nbsp;<math style="vertical-align: -5px">g(x)=\cos(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt.</math>
 
|-
 
|Then,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=G(g(x)).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|If we take the derivative of both sides of the last equation,
 
|-
 
|we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math>
 
|-
 
|by the Chain Rule.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, &nbsp;<math style="vertical-align: -5px">g'(x)=-\sin(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">G'(x)=\sin(x)</math>
 
|-
 
|by the '''Fundamental Theorem of Calculus, Part 1'''.
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -4px">G'(g(x))=\sin(g(x))=\sin(\cos(x)),</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).</math>
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
|-
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, we get
 
|-
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -5px">\sin(\cos(x))\cdot(-\sin(x))</math>
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math style="vertical-align: -3px">1</math>
 
|}
 
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:08, 12 November 2017

This problem has three parts:

(a) State the both parts of the fundamental theorem of calculus.

(b) Compute   .

(c) Evaluate  .



Solution


Detailed Solution


Return to Sample Exam