Difference between revisions of "009B Sample Midterm 2, Problem 1"

From Math Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math>&thinsp; and the <math>x</math>-axis.
+
<span class="exam"> This problem has three parts:
  
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and
+
<span class="exam">(a) State the both parts of the fundamental theorem of calculus.
  
:::<span class="exam">indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>.
+
<span class="exam">(b) Compute &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math>.
::<span class="exam">b) Find an expression for the area of the region <math style="vertical-align: 0px">S</math> as a limit. Do not evaluate the limit.
 
  
 +
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx</math>.
  
[[File:9AMT2_1GP.png|right|400px|frame|Approximation of integral with left endpoints is an overestimate.]]
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Midterm 2, Problem 1 Solution|'''<u>Solution</u>''']]
|-
 
|Recall:
 
|-
 
|
 
::'''1.''' The height of each rectangle in the left-hand Riemann sum is given by
 
|-
 
|
 
:::choosing the left endpoint of the interval.
 
|-
 
|
 
::'''2.''' The height of each rectangle in the right-hand Riemann sum is given by
 
|-
 
|
 
:::choosing the right endpoint of the interval.
 
|-
 
|
 
::'''3.''' See the page on [[Riemann_Sums|'''Riemann Sums''']] for more information.
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009B Sample Midterm 2, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}.</math> Since our interval is <math style="vertical-align: -5px">[1,5]</math> and we are using <math style="vertical-align: -1px">4</math> rectangles, each rectangle has width <math style="vertical-align: -1px">1.</math> Since the problem doesn't specify, we can choose either right- or left-endpoints.  Choosing left-endpoints, the Riemann sum is
 
|-
 
|
 
::<math>1\cdot (f(1)+f(2)+f(3)+f(4)).</math> 
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Thus, the left-endpoint Riemann sum is
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{1\cdot (f(1)+f(2)+f(3)+f(4))} & = & \displaystyle{\bigg(1+\frac{1}{4}+\frac{1}{9}+{1}{16}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{205}{144}.}\\
 
\end{array}</math> 
 
|-
 
|The left-endpoint Riemann sum overestimates the area of <math style="vertical-align: 0px">S.</math>
 
|}
 
  
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the left-endpoint Riemann sum for <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}.</math>
 
|-
 
|The width of each rectangle is
 
|-
 
|
 
::<math style="vertical-align: -13px">\Delta x=\frac{5-1}{n}=\frac{4}{n}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, the left-endpoint Riemann sum is
 
|-
 
|
 
::<math>\Delta x \bigg(f(1)+f\bigg(1+\frac{4}{n}\bigg)+f\bigg(1+2\frac{4}{n}\bigg)+\ldots +f\bigg(1+(n-1)\frac{4}{n}\bigg)\bigg).</math>
 
|-
 
|Now, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit. 
 
|-
 
|So, the area of <math style="vertical-align: 0px">S</math> is equal to
 
|-
 
|
 
::<math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)\,=\,\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' The left-endpoint Riemann sum is <math style="vertical-align: -20px">\frac{205}{144}</math>, which overestimates the area of <math style="vertical-align: 0px">S</math>.
 
|-
 
|'''(b)''' Using left-endpoint Riemann sums:
 
|-
 
|
 
::<math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}</math>
 
|}
 
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:08, 12 November 2017

This problem has three parts:

(a) State the both parts of the fundamental theorem of calculus.

(b) Compute   .

(c) Evaluate  .



Solution


Detailed Solution


Return to Sample Exam