Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Math Wiki
Jump to navigation Jump to search
(Replaced content with " <span class="exam"> Evaluate the integral: ::<math>\int \sin^3x \cos^2x~dx</math> <hr> '''<u>Solution</u>''' 009B Samp...")
 
Line 1: Line 1:
<span class="exam">Let &nbsp;<math>f(x)=1-x^2</math>.
 
  
<span class="exam">(a) Compute the left-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
+
<span class="exam"> Evaluate the integral:
  
<span class="exam">(b) Compute the right-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
+
::<math>\int \sin^3x \cos^2x~dx</math>
  
<span class="exam">(c) Express &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
+
<hr>
 +
[[009B Sample Midterm 1, Problem 5 Solution|'''<u>Solution</u>''']]
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009B Sample Midterm 1, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Foundations: &nbsp;
 
|-
 
|'''1.''' The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
 
|-
 
|'''2.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
 
|-
 
|'''3.''' See the Riemann sums (insert link) for more information.
 
|}
 
  
  
'''Solution:'''
 
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Since our interval is &nbsp;<math style="vertical-align: -5px">[0,3]</math>&nbsp; and we are using 3 rectangles, each rectangle has width 1.
 
|-
 
|So, the left-hand Riemann sum is
 
|-
 
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: 0px">1(f(0)+f(1)+f(2)).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Thus, the left-hand Riemann sum is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{1(f(0)+f(1)+f(2))} & = & \displaystyle{1+0+-3}\\
 
&&\\
 
& = & \displaystyle{-2.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Since our interval is &nbsp;<math style="vertical-align: -5px">[0,3]</math>&nbsp; and we are using 3 rectangles, each rectangle has width 1.
 
|-
 
|So, the right-hand Riemann sum is
 
|-
 
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">1(f(1)+f(2)+f(3)).</math>
 
|}
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Thus, the right-hand Riemann sum is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{1(f(1)+f(2)+f(3))} & = & \displaystyle{0+-3+-8}\\
 
&&\\
 
& = & \displaystyle{-11.}
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; be the number of rectangles used in the right-hand Riemann sum for &nbsp;<math style="vertical-align: -5px">f(x)=1-x^2.</math>
 
|-
 
|The width of each rectangle is
 
|-
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\Delta x=\frac{3-0}{n}=\frac{3}{n}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, the right-hand Riemann sum is
 
|-
 
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg).</math>
 
|-
 
|Finally, we let &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; go to infinity to get a limit. 
 
|-
 
|Thus, &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; is equal to &nbsp;<math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg).</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -2px">-2</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -2px">-11</math>
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>
 
|}
 
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:08, 12 November 2017

Evaluate the integral:


Solution


Detailed Solution


Return to Sample Exam