Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Math Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Evaluate the indefinite and definite integrals.
+
<span class="exam"> Let &nbsp;<math style="vertical-align: -5px">f(x)=1-x^2</math>.
  
::<span class="exam">a) <math>\int x^2\sqrt{1+x^3}~dx</math>
+
<span class="exam">(a) Compute the left-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
::<span class="exam">b) <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
 
  
 +
<span class="exam">(b) Compute the right-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(c) Express &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
!Foundations: &nbsp;  
 
|-
 
| How would you integrate <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx?</math>
 
|-
 
|
 
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
 
|-
 
|
 
::Thus, <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx\,=\,\int u~du\,=\,\frac{u^2}{2}+C\,=\,\frac{(\ln x)^2}{2}+C.</math>
 
|}
 
'''Solution:'''
 
  
'''(a)'''
+
<hr>
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009B Sample Midterm 1, Problem 1 Solution|'''<u>Solution</u>''']]
!Step 1: &nbsp;
 
|-
 
|We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3</math>. Then, <math style="vertical-align: 0px">du=3x^2dx</math> and&thinsp; <math style="vertical-align: -13px">\frac{du}{3}=x^2dx</math>.
 
|-
 
|Therefore, the integral becomes&thinsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We now have:
 
|-
 
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>.
 
|}
 
  
'''(b)'''
+
[[009B Sample Midterm 1, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Again, we need to use <math>u</math>-substitution. Let <math style="vertical-align: -5px">u=\sin(x)</math>. Then, <math style="vertical-align: -5px">du=\cos(x)dx</math>. Also, we need to change the bounds of integration.
 
|-
 
|Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x)</math>, we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>.
 
|-
 
|Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du</math>.
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We now have:
 
|-
 
|&nbsp; &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>.
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' &nbsp; <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>
 
|-
 
|'''(b)''' &nbsp; <math>-1+\sqrt{2}</math>
 
|}
 
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 14:47, 12 November 2017

Let  .

(a) Compute the left-hand Riemann sum approximation of    with    boxes.

(b) Compute the right-hand Riemann sum approximation of    with    boxes.

(c) Express    as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Solution


Detailed Solution


Return to Sample Exam