Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Evaluate the indefinite and definite integrals. ::<span class="exam">a) <math>\int x^2\sqrt{1+x^3}~dx</math> ::<span class="exam">b) <math>\int _{\frac{\pi...") |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> Let <math style="vertical-align: -5px">f(x)=1-x^2</math>. |
− | + | <span class="exam">(a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | |
− | |||
+ | <span class="exam">(b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | ||
− | + | <span class="exam">(c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. | |
− | |||
− | |||
− | |||
− | |||
− | '''Solution | + | <hr> |
+ | [[009B Sample Midterm 1, Problem 1 Solution|'''<u>Solution</u>''']] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[009B Sample Midterm 1, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']] | |
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 14:47, 12 November 2017
Let .
(a) Compute the left-hand Riemann sum approximation of with boxes.
(b) Compute the right-hand Riemann sum approximation of with boxes.
(c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.