Difference between revisions of "009C Sample Midterm 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
  
  
 +
<hr>
 +
[[009C Sample Midterm 2, Problem 5 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''Ratio Test'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|}
 
  
 +
[[009C Sample Midterm 2, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Assume that the power series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; converges.
 
|-
 
|Let &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; be the radius of convergence of this power series.
 
|-
 
|We can use the Ratio Test to find &nbsp;<math style="vertical-align: 0px">R.</math>&nbsp;
 
|-
 
|Using the Ratio Test, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
 
\end{array}</math>
 
|-
 
|Since the radius of convergence of the series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">R,</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we use the Ratio Test to find the radius of convergence of the series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n.</math>
 
|-
 
|Using the Ratio Test, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}2^nx^{n+1}}{c_n2^{n+1}x^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{2c_n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\frac{|x|}{2}\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
 
\end{array}</math>
 
|-
 
|Hence, the radius of convergence of this power series is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{2}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}=2R.</math>
 
|-
 
|Therefore, this power series converges.
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Assume that the power series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; converges.
 
|-
 
|Let &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; be the radius of convergence of this power series.
 
|-
 
|We can use the Ratio Test to find &nbsp;<math style="vertical-align: 0px">R.</math>&nbsp;
 
|-
 
|Using the Ratio Test, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
 
\end{array}</math>
 
|-
 
|Since the radius of convergence of the series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">R,</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we use the Ratio Test to find the radius of convergence of the series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_n(-x)^n .</math>
 
|-
 
|Using the Ratio Test, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}(-x)^{n+1}}{c_n(-x)^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}(-x)}{c_n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
 
\end{array}</math>
 
|-
 
|Hence, the radius of convergence of this power series is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}=R.</math>
 
|-
 
|Therefore, this power series converges.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; converges
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; converges
 
|}
 
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 11:42, 12 November 2017

If    converges, does it follow that the following series converges?

(a)  

(b)  



Solution


Detailed Solution


Return to Sample Exam