|
|
| (3 intermediate revisions by the same user not shown) |
| Line 6: |
Line 6: |
| | | | |
| | | | |
| | + | <hr> |
| | + | [[009C Sample Midterm 2, Problem 5 Solution|'''<u>Solution</u>''']] |
| | | | |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Foundations:
| |
| − | |-
| |
| − | |If a power series converges, then it has a nonempty interval of convergence.
| |
| − | |}
| |
| | | | |
| | + | [[009C Sample Midterm 2, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']] |
| | | | |
| − | '''Solution:'''
| |
| | | | |
| − | '''(a)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |Assume that the power series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> converges.
| |
| − | |-
| |
| − | |Let <math style="vertical-align: 0px">R</math> be the radius of convergence of this power series.
| |
| − | |-
| |
| − | |So, the power series
| |
| − | |-
| |
| − | | <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>
| |
| − | |-
| |
| − | |converges in the interval <math style="vertical-align: -5px">(-R,R).</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Let <math style="vertical-align: -5px">a\in (-2R,2R).</math> Then, <math style="vertical-align: -13px">\frac{a}{2} \in (-R,R).</math>
| |
| − | |-
| |
| − | |So,
| |
| − | |-
| |
| − | | <math>\sum_{n=0}^\infty c_n\bigg(\frac{a}{2}\bigg)^n</math>
| |
| − | |-
| |
| − | |converges by assumption.
| |
| − | |-
| |
| − | |Since <math style="vertical-align: 0px">a</math> was an arbitrary number in the interval <math style="vertical-align: -5px">a\in (-2R,2R),</math>
| |
| − | |-
| |
| − | | <math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math>
| |
| − | |-
| |
| − | |converges in the interval <math style="vertical-align: -5px">(-2R,2R).</math>
| |
| − | |}
| |
| − |
| |
| − | '''(b)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |
| |
| − | |}
| |
| − |
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Final Answer:
| |
| − | |-
| |
| − | | '''(a)''' converges
| |
| − | |-
| |
| − | | '''(b)''' converges
| |
| − | |}
| |
| | [[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | | [[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n}
converges, does it follow that the following series converges?
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n(-x)^n }
Solution
Detailed Solution
Return to Sample Exam