Difference between revisions of "009C Sample Midterm 2, Problem 2"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Determine convergence or divergence: ::<math>\sum_{n=1}^\infty \frac{3^n}{n}</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !F...")
 
 
Line 3: Line 3:
 
::<math>\sum_{n=1}^\infty \frac{3^n}{n}</math>
 
::<math>\sum_{n=1}^\infty \frac{3^n}{n}</math>
  
 +
<hr>
 +
[[009C Sample Midterm 2, Problem 2 Solution|'''<u>Solution</u>''']]
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009C Sample Midterm 2, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Foundations: &nbsp;
 
|-
 
|'''Direct Comparison Test'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; and &nbsp;<math>\{b_n\}</math>&nbsp; be positive sequences where &nbsp;<math style="vertical-align: -3px">a_n\le b_n</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; for all &nbsp;<math style="vertical-align: -3px">n\ge N</math>&nbsp; for some &nbsp;<math style="vertical-align: -3px">N\ge 1.</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; '''1.''' If &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; converges, then &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; converges.
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; '''2.''' If &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; diverges, then &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; diverges.
 
|}
 
  
  
'''Solution:'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we note that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{3^n}{n}>0</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|This means that we can use a comparison test on this series.
 
|-
 
|Let &nbsp;<math style="vertical-align: -13px">a_n=\frac{3^n}{n}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -14px">b_n=\frac{1}{n}.</math>
 
|-
 
|We want to compare the series in this problem with
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{1}{n}.</math>
 
|-
 
|This is the harmonic series (or &nbsp;<math style="vertical-align: -4px">p</math>-series with &nbsp;<math style="vertical-align: -4px">p=1.</math>&nbsp;)
 
|-
 
|Hence, &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; diverges.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Also, we have &nbsp;<math style="vertical-align: -4px">b_n<a_n</math>&nbsp; since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n}<\frac{3^n}{n}</math>
 
|-
 
| for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; diverges
 
|-
 
|by the Direct Comparison Test.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; diverges (by the Direct Comparison Test)
 
|}
 
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 11:37, 12 November 2017

Determine convergence or divergence:


Solution


Detailed Solution


Return to Sample Exam