Difference between revisions of "009C Sample Midterm 1, Problem 3"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Determine whether the following series converges absolutely, <span class="exam"> conditionally or whether it diverges. <span class="exam"> Be sure to ju...")
 
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Midterm 1, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' A series &nbsp;<math>\sum a_n</math>&nbsp; is '''absolutely convergent''' if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; the series &nbsp;<math>\sum |a_n|</math>&nbsp; converges.
 
|-
 
|'''2.''' A series &nbsp;<math>\sum a_n</math>&nbsp; is '''conditionally convergent''' if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; the series &nbsp;<math>\sum |a_n|</math>&nbsp; diverges and the series &nbsp;<math>\sum a_n</math>&nbsp; converges.
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Midterm 1, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we take the absolute value of the terms in the original series.
 
|-
 
|Let &nbsp;<math style="vertical-align: -14px">a_n=\frac{(-1)^n}{n}.</math>
 
|-
 
|Therefore,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=1}^\infty |a_n|} & = & \displaystyle{\sum_{n=1}^\infty \bigg|\frac{(-1)^n}{n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=1}^\infty \frac{1}{n}.}
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|This series is the harmonic series (or &nbsp;<math style="vertical-align: -5px">p</math>-series with &nbsp;<math style="vertical-align: -5px">p=1</math>&nbsp;).
 
|-
 
|Thus, it diverges. Hence, the series
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math>
 
|-
 
|is not absolutely convergent.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we need to look back at the original series to see
 
|-
 
|if it conditionally converges.
 
|-
 
|For
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{(-1)^n}{n},</math>
 
|-
 
|we notice that this series is alternating.
 
|-
 
|Let &nbsp;<math style="vertical-align: -14px"> b_n=\frac{1}{n}.</math>
 
|-
 
|First, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{n}\ge 0</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|The sequence &nbsp;<math style="vertical-align: -4px">\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+1}<\frac{1}{n}</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n}=0.</math>
 
|-
 
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math> &nbsp; converges
 
|-
 
|by the Alternating Series Test.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|Since the series &nbsp;<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math> &nbsp; is not absolutely convergent but convergent,
 
|-
 
|this series is conditionally convergent.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; conditionally convergent (by the p-test and the Alternating Series Test)
 
|-
 
|
 
|}
 
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 21:56, 11 November 2017

Determine whether the following series converges absolutely,

conditionally or whether it diverges.

Be sure to justify your answers!



Solution


Detailed Solution


Return to Sample Exam