Difference between revisions of "009A Sample Midterm 2, Problem 2"

From Math Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
  
 
<span class="exam">(b) Use the Intermediate Value Theorem to show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has a zero in the interval &nbsp;<math style="vertical-align: -5px">[0,1].</math>
 
<span class="exam">(b) Use the Intermediate Value Theorem to show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has a zero in the interval &nbsp;<math style="vertical-align: -5px">[0,1].</math>
 +
<hr>
 +
[[009A Sample Midterm 2, Problem 2 Solution|'''<u>Solution</u>''']]
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009A Sample Midterm 2, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Foundations: &nbsp;
 
|-
 
|What is a zero of the function &nbsp;<math style="vertical-align: -5px">f(x)?</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; A zero is a value &nbsp;<math style="vertical-align: -1px">c</math>&nbsp; such that &nbsp;<math style="vertical-align: -5px">f(c)=0.</math>
 
|}
 
  
  
'''Solution:'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(a) &nbsp;
 
|-
 
|'''Intermediate Value Theorem'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on a closed interval &nbsp;<math style="vertical-align: -5px">[a,b]</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; is any number between &nbsp;<math style="vertical-align: -5px">f(a)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(b),</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; then there is at least one number &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in the closed interval such that &nbsp;<math style="vertical-align: -5px">f(x)=c.</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on the interval &nbsp;<math style="vertical-align: -5px">[0,1]</math>&nbsp; since &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous everywhere.
 
|-
 
|Also,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>f(0)=2</math>
 
|-
 
|and
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>f(1)=3-8+2=-3.</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">y=0</math>&nbsp; is between &nbsp;<math style="vertical-align: -5px">f(0)=2</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(1)=-3,</math>
 
|-
 
|the Intermediate Value Theorem tells us that there is at least one number &nbsp;<math style="vertical-align: -1px">x</math>
 
|-
 
|such that &nbsp;<math style="vertical-align: -5px">f(x)=0.</math>
 
|-
 
|This means that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has a zero in the interval &nbsp;<math style="vertical-align: -5px">[0,1].</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; See solution above.
 
|}
 
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 14:19, 9 November 2017

The function    is a polynomial and therefore continuous everywhere.

(a) State the Intermediate Value Theorem.

(b) Use the Intermediate Value Theorem to show that    has a zero in the interval  


Solution


Detailed Solution


Return to Sample Exam