Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
  
 
<span class="exam">(b) Show that at time &nbsp;<math style="vertical-align: -4px">t=5,</math>&nbsp; the size of the population is half its limiting size.
 
<span class="exam">(b) Show that at time &nbsp;<math style="vertical-align: -4px">t=5,</math>&nbsp; the size of the population is half its limiting size.
 +
<hr>
 +
[[009A Sample Midterm 1, Problem 2 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' If &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow a^-} f(x)=\lim_{x\rightarrow a^+} f(x)=c,</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow a} f(x)=c.</math>
 
|-
 
|'''2.''' &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=a</math>&nbsp; if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
 
|}
 
  
 +
[[009A Sample Midterm 1, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Notice that we are calculating a left hand limit.
 
|-
 
|Thus, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; that are smaller than &nbsp;<math style="vertical-align: -1px">1.</math>
 
|-
 
|Using the definition of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-} f(x)=\lim_{x\rightarrow 1^-} x^2.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 1^-} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^-} x^2}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 1} x^2}\\
 
&&\\
 
& = & \displaystyle{1^2}\\
 
&&\\
 
& = & \displaystyle{1.}\\
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Notice that we are calculating a right hand limit.
 
|-
 
|Thus, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; that are bigger than &nbsp;<math style="vertical-align: -2px">1.</math>
 
|-
 
|Using the definition of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+} f(x)=\lim_{x\rightarrow 1^+} \sqrt{x}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 1^+} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^+} \sqrt{x}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 1} \sqrt{x}}\\
 
&&\\
 
& = & \displaystyle{\sqrt{1}}\\
 
&&\\
 
& = & \displaystyle{1.}\\
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|From (a) and (b), we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-}f(x)=1</math>
 
|-
 
|and
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+}f(x)=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-}f(x)=\lim_{x\rightarrow 1^+}f(x)=1,</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=1.</math>
 
|}
 
 
'''(d)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|From (c), we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=1.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f(1)=\sqrt{1}=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=f(1),</math>
 
|-
 
|<math style="vertical-align: -5px">f(x)</math> &nbsp;is continuous at &nbsp;<math style="vertical-align: -1px">x=1.</math>
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp; &nbsp; '''(d)''' &nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: -1px">x=1</math>&nbsp; since &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 1}f(x)=f(1).</math>
 
|}
 
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 13:40, 8 November 2017

Suppose the size of a population at time    is given by

(a) Determine the size of the population as    We call this the limiting population size.

(b) Show that at time    the size of the population is half its limiting size.


Solution


Detailed Solution


Return to Sample Exam