Difference between revisions of "009A Sample Midterm 1, Problem 3"

From Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Let &nbsp;<math style="vertical-align: -5px">y=\sqrt{3x-5}.</math>
+
<span class="exam">Consider the following function &nbsp;<math style="vertical-align: -5px"> f:</math>
 +
::<math>f(x) = \left\{
 +
    \begin{array}{lr}
 +
      x^2 &  \text{if }x < 1\\
 +
      \sqrt{x} & \text{if }x \geq 1
 +
    \end{array}
 +
  \right.
 +
</math>
  
<span class="exam">(a) Use the definition of the derivative to compute &nbsp; <math>\frac{dy}{dx}</math> &nbsp; for &nbsp;<math style="vertical-align: -5px">y=\sqrt{3x-5}.</math>
+
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^-} f(x).</math>
  
<span class="exam">(b) Find the equation of the tangent line to &nbsp;<math style="vertical-align: -5px">y=\sqrt{3x-5}</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">(2,1).</math>
+
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^+} f(x).</math>
  
 +
<span class="exam">(c) Find &nbsp;<math style="vertical-align: -13px"> \lim_{x\rightarrow 1} f(x).</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(d) Is &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; continuous at &nbsp;<math style="vertical-align: -1px">x=1?</math>&nbsp; Briefly explain.
!Foundations: &nbsp;
+
<hr>
|-
+
[[009A Sample Midterm 1, Problem 3 Detailed Solution|'''<u>Detailed Solution with Background Information</u>''']]
|'''1.''' Recall
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}</math>
 
|-
 
|'''2.''' The equation of the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">y=m(x-a)+b</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">m=f'(a).</math>
 
|}
 
  
 +
[[File:9ASM1P3.jpg|600px|thumb|center]]
  
'''Solution:'''
 
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -5px">f(x)=\sqrt{3x-5}.</math>
 
|-
 
|Using the limit definition of the derivative, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{\sqrt{3(x+h)-5}-\sqrt{3x-5}}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{\sqrt{3x+3h-5}-\sqrt{3x-5}}{h}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we multiply the numerator and denominator by the conjugate of the numerator.
 
|-
 
|Hence, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\sqrt{3x+3h-5}-\sqrt{3x-5})}{h} \frac{(\sqrt{3x+3h-5}+\sqrt{3x-5})}{(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{(3x+3h-5)-(3x-5)}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3}{\sqrt{3x+3h-5}+\sqrt{3x-5}}}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{\sqrt{3x-5}+\sqrt{3x-5}}}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{2\sqrt{3x-5}}.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We start by finding the slope of the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)=\sqrt{3x-5}</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">(2,1).</math>
 
|-
 
|Using the derivative calculated in part (a), the slope is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{m} & = & \displaystyle{f'(2)}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{2\sqrt{3(2)-5}}}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{2}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)=\sqrt{3x-5}</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">(2,1)</math>
 
|-
 
|has slope &nbsp;<math style="vertical-align: -13px">m=\frac{3}{2}</math>&nbsp; and passes through the point &nbsp;<math style="vertical-align: -5px">(2,1).</math>
 
|-
 
|Hence, the equation of this line is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=\frac{3}{2}(x-2)+1.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{dy}{dx}=\frac{3}{2\sqrt{3x-5}}</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>y=\frac{3}{2}(x-2)+1</math>
 
|}
 
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 07:29, 7 November 2017

Consider the following function  

(a) Find  

(b) Find  

(c) Find  

(d) Is    continuous at    Briefly explain.


Detailed Solution with Background Information

9ASM1P3.jpg


Return to Sample Exam