Difference between revisions of "009B Sample Final 1, Problem 5"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Consider the solid obtained by rotating the area bounded by the following three functions about the <math style="vertical-align: -3px">y</math>-axis: ::::...")
 
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam"> Consider the solid obtained by rotating the area bounded by the following three functions about the <math style="vertical-align: -3px">y</math>-axis:
+
<span class="exam"> The region bounded by the parabola &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; and the line &nbsp;<math style="vertical-align: -4px">y=2x</math>&nbsp; in the first quadrant is revolved about the &nbsp;<math style="vertical-align: -4px">y</math>-axis to generate a solid.
  
::::::<span class="exam"> <math style="vertical-align: 0px">x=0</math>, <math style="vertical-align: -4px">y=e^x</math>, and <math style="vertical-align: -4px">y=ex</math>.
+
<span class="exam">(a) Sketch the region bounded by the given functions and find their points of intersection.  
  
<span class="exam">a) Sketch the region bounded by the given three functions. Find the intersection point of the two functions:
+
<span class="exam">(b) Set up the integral for the volume of the solid.
  
:<span class="exam"><math style="vertical-align: -4px">y=e^x</math> and <math style="vertical-align: -4px">y=ex</math>. (There is only one.)
+
<span class="exam">(c) Find the volume of the solid by computing the integral.
 
 
<span class="exam">b) Set up the integral for the volume of the solid.
 
 
 
<span class="exam">c) Find the volume of the solid by computing the integral.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Recall:
+
|'''1.''' You can find the intersection points of two functions, say &nbsp; <math style="vertical-align: -5px">f(x),g(x),</math>
|-
 
|'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math>
 
 
|-
 
|-
 
|
 
|
::by setting <math style="vertical-align: -5px">f(x)=g(x)</math> and solving for <math style="vertical-align: 0px">x</math>.
+
&nbsp; &nbsp; &nbsp; &nbsp; by setting &nbsp;<math style="vertical-align: -5px">f(x)=g(x)</math>&nbsp; and solving for &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|-
|'''2.''' The volume of a solid obtained by rotating an area around the <math style="vertical-align: -4px">y</math>-axis using cylindrical shells is given by   
+
|'''2.''' The volume of a solid obtained by rotating an area around the &nbsp;<math style="vertical-align: -4px">y</math>-axis using cylindrical shells is given by   
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -13px">\int 2\pi rh~dx,</math> where <math style="vertical-align: 0px">r</math> is the radius of the shells and <math style="vertical-align: 0px">h</math> is the height of the shells.
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int 2\pi rh~dx,</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; is the radius of the shells and &nbsp;<math style="vertical-align: 0px">h</math>&nbsp; is the height of the shells.
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 34: Line 29:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we sketch the region bounded by the three functions.
+
|First, we sketch the region bounded by the given functions.
 
|-
 
|-
|Insert graph here.
+
|[[File:009B_SF1_5.png|center|300px]]       
 
|}
 
|}
  
Line 42: Line 37:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Setting the equations equal, we have <math style="vertical-align: 0px">e^x=ex</math>.
+
|Setting the equations equal, we have &nbsp;<math style="vertical-align: 0px">x^2=2x.</math>
 
|-
 
|-
|We get one intersection point, which is <math style="vertical-align: -4px">(1,e)</math>.
+
|Solving for &nbsp;<math style="vertical-align: -4px">x,</math>&nbsp; we get
 
|-
 
|-
|This intersection point can be seen in the graph shown in Step 1.
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{0} & = & \displaystyle{x^2-2x}\\
 +
&&\\
 +
& = & \displaystyle{x(x-2).}
 +
\end{array}</math>
 +
|-
 +
|So, &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=2.</math>
 +
|-
 +
|If we plug these values into our functions, we get the intersection points
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">(0,0)</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">(2,4).</math>
 +
|-
 +
|This intersection points can be seen in the graph shown in Step 1.
 
|}
 
|}
  
Line 54: Line 61:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using cylindrical shells. The radius of the shells is given by <math style="vertical-align: 0px">r=x</math>.
+
|We proceed using cylindrical shells. The radius of the shells is given by &nbsp;<math style="vertical-align: 0px">r=x.</math>
 
|-
 
|-
|The height of the shells is given by <math style="vertical-align: 0px">h=e^x-ex</math>.
+
|The height of the shells is given by &nbsp;<math style="vertical-align: 0px">h=2x-x^2.</math>
 
|}
 
|}
  
Line 65: Line 72:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -14px">\int 2\pi rh\,dx\,=\,\int_0^1 2\pi x(e^x-ex)\,dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">\int 2\pi rh~dx~=~\int_0^2 2\pi x(2x-x^2)~dx.</math>
 
|}
 
|}
  
Line 76: Line 83:
 
|-
 
|-
 
|
 
|
::<math>\int_0^1 2\pi x(e^x-ex)\,dx\,=\,2\pi\int_0^1 xe^x\,dx-2\pi\int_0^1ex^2\,dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\int_0^2 2\pi x(2x-x^2)~dx~=~2\pi\int_0^2 2x^2-x^3~dx.</math>
 
|}
 
|}
  
Line 82: Line 89:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|For the first integral, we need to use integration by parts.
+
|We have
|-
 
|Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>. Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=e^x</math>.
 
|-
 
|So, the integral becomes
 
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
\displaystyle{\int_0^1 2\pi x(e^x-ex)~dx} & = & \displaystyle{2\pi\bigg(xe^x\bigg|_0^1 -\int_0^1 e^xdx\bigg)-\frac{2\pi ex^3}{3}\bigg|_0^1}\\
+
\displaystyle{\int_0^2 2\pi x(2x-x^2)~dx} & = & \displaystyle{2\pi\int_0^2 2x^2-x^3~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{2\pi\bigg(xe^x-e^x\bigg)\bigg|_0^1-\frac{2\pi e}{3}}\\
+
& = & \displaystyle{2\pi\bigg(\frac{2x^3}{3}-\frac{x^4}{4}\bigg)\bigg|_0^2}\\
 
&&\\
 
&&\\
& = & \displaystyle{2\pi(e-e-(-1))-\frac{2\pi e}{3}}\\
+
& = & \displaystyle{2\pi\bigg(\frac{2^4}{3}-\frac{2^4}{4}\bigg)-2\pi(0)}\\
 
&&\\
 
&&\\
& = & \displaystyle{2\pi-\frac{2\pi e}{3}}.\\
+
& = & \displaystyle{\frac{8\pi}{3}.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' &nbsp;<math style="vertical-align: -5px">(1,e)</math> (See Step 1 for the graph)
+
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math style="vertical-align: -5px">(0,0),(2,4)</math>&nbsp; (See Step 1 for the graph)
 
|-
 
|-
|'''(b)''' &nbsp;<math style="vertical-align: -15px">\int_0^1 2\pi x(e^x-ex)~dx</math>
+
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;<math style="vertical-align: -15px">\int_0^2 2\pi x(2x-x^2)~dx</math>
 
|-
 
|-
|'''(c)''' &nbsp;<math style="vertical-align: -14px">2\pi-\frac{2\pi e}{3}</math>
+
|&nbsp; &nbsp;'''(c)''' &nbsp; &nbsp;<math style="vertical-align: -14px">\frac{8\pi}{3}</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 11:16, 23 May 2017

The region bounded by the parabola    and the line    in the first quadrant is revolved about the  -axis to generate a solid.

(a) Sketch the region bounded by the given functions and find their points of intersection.

(b) Set up the integral for the volume of the solid.

(c) Find the volume of the solid by computing the integral.

Foundations:  
1. You can find the intersection points of two functions, say  

        by setting    and solving for  

2. The volume of a solid obtained by rotating an area around the  -axis using cylindrical shells is given by

          where    is the radius of the shells and    is the height of the shells.


Solution:

(a)

Step 1:  
First, we sketch the region bounded by the given functions.
009B SF1 5.png
Step 2:  
Setting the equations equal, we have  
Solving for    we get
       
So,    and  
If we plug these values into our functions, we get the intersection points
         and  
This intersection points can be seen in the graph shown in Step 1.

(b)

Step 1:  
We proceed using cylindrical shells. The radius of the shells is given by  
The height of the shells is given by  
Step 2:  
So, the volume of the solid is

       

(c)

Step 1:  
We need to integrate

       

Step 2:  
We have

       


Final Answer:  
   (a)      (See Step 1 for the graph)
   (b)    
   (c)    

Return to Sample Exam