Difference between revisions of "009A Sample Final 2, Problem 10"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Let ::<math>f(x)=\frac{4x}{x^2+1}</math> <span class="exam">(a) Find all local maximum and local minimum values of  <math style="vertical-align: -4px"...")
 
Line 152: Line 152:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we note that the degree of the numerator is &nbsp;<math style="vertical-align: -1px">1</math>&nbsp; and
+
|By L'Hopital's Rule, we have
 
|-
 
|-
|the degree of the denominator is &nbsp;<math style="vertical-align: 0px">2.</math>&nbsp;
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow \infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{4x}{x^2+1}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{4}{2x}}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 +
|-
 +
|Similarly, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow -\infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4x}{x^2+1}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4}{2x}}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 160: Line 176:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since the degree of the denominator is greater than the degree of the numerator,  
+
|Since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\displaystyle{\lim_{x\rightarrow -\infty } f(x)=\lim_{x\rightarrow \infty } f(x)=0,}</math>
 
|-
 
|-
 
|<math style="vertical-align: -5px">f(x)</math>&nbsp; has a horizontal asymptote  
 
|<math style="vertical-align: -5px">f(x)</math>&nbsp; has a horizontal asymptote  

Revision as of 17:13, 20 May 2017

Let

(a) Find all local maximum and local minimum values of    find all intervals where    is increasing and all intervals where    is decreasing.

(b) Find all inflection points of the function    find all intervals where the function    is concave upward and all intervals where    is concave downward.

(c) Find all horizontal asymptotes of the graph  

(d) Sketch the graph of  

Foundations:  
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  
4. Inflection points occur when  


Solution:

(a)

Step 1:  
We start by taking the derivative of   
Using the Quotient Rule, we have
       
Now, we set   
So, we have
       
Hence, we have    and  
So, these values of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}   break up the number line into 3 intervals:
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-1),(-1,1),(1,\infty).}
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-2,~f'(x)=\frac{-12}{25}<0.}
For  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0,~f'(x)=4>0.}
For  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2,~f'(x)=\frac{-12}{25}<0.}
Thus,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is increasing on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1,1)}   and decreasing on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-1)\cup (1,\infty).}
Step 3:  
Using the First Derivative Test,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has a local minimum at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-1}   and a local maximum at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1.}  
Thus, the local maximum and local minimum values of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   are
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(1)=2,~f(-1)=-2.}

(b)

Step 1:  
To find the intervals when the function is concave up or concave down, we need to find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x).}
Using the Quotient Rule and Chain Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f''(x)} & = & \displaystyle{\frac{(x^2+1)^2(-4(x^2-1))'+4(x^2-1)((x^2+1)^2)'}{((x^2+1)^2)^2}}\\ &&\\ & = & \displaystyle{\frac{(x^2+1)^2(-8x)+4(x^2-1)2(x^2+1)(x^2+1)'}{(x^2+1)^4}}\\ &&\\ & = & \displaystyle{\frac{(x^2+1)^2(-8x)+4(x^2-1)2(x^2+1)(2x)}{(x^2+1)^4}}\\ &&\\ & = & \displaystyle{\frac{(x^2+1)(-8x)+16(x^2-1)x}{(x^2+1)^3}}\\ &&\\ & = & \displaystyle{\frac{8x^3-24x}{(x^2+1)^3}}\\ &&\\ & = & \displaystyle{\frac{8x(x^2-3)}{(x^2+1)^3}.} \end{array}}
We set  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)=0.}
So, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8x(x^2-3)=0.}  
Hence,
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0,~x=-\sqrt{3},~x=\sqrt{3}.}
This value breaks up the number line into four intervals:
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-\sqrt{3}),(-\sqrt{3},0),(0,\sqrt{3}),(\sqrt{3},\infty).}
Step 2:  
Again, we use test points in these four intervals.
For  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-2,}   we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)=\frac{-16}{125}<0.}
For  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-1,}   we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)=2>0.}
For  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1,}   we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)=-2<0.}
For  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2,}   we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)=\frac{16}{125}>0.}
Thus,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is concave up on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\sqrt{3},0)\cup(\sqrt{3},\infty),}   and concave down on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-\sqrt{3})\cup(0,\sqrt{3}).}
Step 3:  
The inflection points occur at
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0,~x=-\sqrt{3},~x=\sqrt{3}.}
Plugging these into  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x),} we get the inflection points
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0),(-\sqrt{3},-\sqrt{3}),(\sqrt{3},\sqrt{3}).}

(c)

Step 1:  
By L'Hopital's Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow \infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{4x}{x^2+1}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{4}{2x}}\\ &&\\ & = & \displaystyle{0.} \end{array}}
Similarly, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4x}{x^2+1}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4}{2x}}\\ &&\\ & = & \displaystyle{0.} \end{array}}
Step 2:  
Since
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\lim_{x\rightarrow -\infty } f(x)=\lim_{x\rightarrow \infty } f(x)=0,}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has a horizontal asymptote
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.}
(d):  
Insert sketch


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is increasing on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1,1)}   and decreasing on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-1)\cup (1,\infty).}
           The local maximum value of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}   and the local minimum value of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2}  
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is concave up on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\sqrt{3},0)\cup(\sqrt{3},\infty),}   and concave down on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-\sqrt{3})\cup(0,\sqrt{3}).}
            The inflection points are  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0),(-\sqrt{3},-\sqrt{3}),(\sqrt{3},\sqrt{3}).}
   (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0}
   (d)    See above

Return to Sample Exam