Difference between revisions of "009A Sample Final 2, Problem 3"
(Created page with "<span class="exam">Compute <math>\frac{dy}{dx}.</math> <span class="exam">(a) <math style="vertical-align: -15px">y=\bigg(\frac{x^2+3}{x^2-1}\bigg)^3</math> <sp...") |
|||
| Line 88: | Line 88: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -5px"> | + | |Let <math style="vertical-align: -5px">y=\sin^{-1}(x).</math> Then, |
|- | |- | ||
| − | | | + | | <math>\sin(y)=x</math> |
|- | |- | ||
| − | | | + | |for <math>y</math> in the interval <math>\bigg[-\frac{\pi}{2},\frac{\pi}{2}\bigg].</math> |
|- | |- | ||
| − | | | + | |Using implicit differentiation, we have |
|- | |- | ||
| − | | <math>\ | + | | <math>\cos(y) \frac{dy}{dx}=1.</math> |
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| − | | | + | |Solving for <math style="vertical-align: -15px">\frac{dy}{dx},</math> we get |
|- | |- | ||
| − | + | | <math>\frac{dy}{dx}=\frac{1}{\cos(y)}.</math> | |
| − | |||
| − | |||
| − | |||
| − | | <math> | ||
|} | |} | ||
| Line 114: | Line 106: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, since | + | |Now, since <math>\sin(y)=x,</math> we have the following diagram. |
|- | |- | ||
| − | | | + | |(Insert diagram) |
|- | |- | ||
| − | | | + | |Therefore, |
| + | |- | ||
| + | | <math>\cos(y)=\sqrt{1-x^2}.</math> | ||
| + | |- | ||
| + | |Hence, | ||
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
| − | \displaystyle{\ | + | \displaystyle{\frac{dy}{dx}} & = & \displaystyle{\frac{1}{\cos(y)}}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\sqrt{1-x^2}.} | + | & = & \displaystyle{\frac{1}{\sqrt{1-x^2}}.} |
\end{array}</math> | \end{array}</math> | ||
| − | |||
| − | |||
| − | |||
| − | |||
|} | |} | ||
Latest revision as of 17:11, 20 May 2017
Compute
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\bigg(\frac{x^2+3}{x^2-1}\bigg)^3}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x\cos(\sqrt{x+1})}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sin^{-1} x}
| Foundations: |
|---|
| 1. Product Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(x)g(x))=f(x)g'(x)+f'(x)g(x)} |
| 2. Quotient Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}} |
| 3. Chain Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)} |
Solution:
(a)
| Step 1: | |
|---|---|
| Using the Chain Rule, we have | |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{x^2+3}{x^2-1}\bigg)'.} |
| Step 2: |
|---|
| Now, using the Quotient Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{dy}{dx}} & = & \displaystyle{3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{x^2+3}{x^2-1}\bigg)'}\\ &&\\ & = & \displaystyle{3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{(x^2-1)(x^2+3)'-(x^2+3)(x^2-1)'}{(x^2-1)^2}\bigg)}\\ &&\\ & = & \displaystyle{3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{(x^2-1)(2x)-(x^2+3)(2x)}{(x^2-1)^2}\bigg)}\\ &&\\ & = & \displaystyle{3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{2x^3-2x-2x^3-6x}{(x^2-1)^2}\bigg)}\\ &&\\ & = & \displaystyle{\frac{3(x^2+3)^2(-8x)}{(x^2-1)^4}.} \end{array}} |
(b)
| Step 1: |
|---|
| Using the Product Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=x(\cos(\sqrt{x+1}))'+(x)'\cos(\sqrt{x+1}).} |
| Step 2: |
|---|
| Now, using the Chain Rule, we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{dy}{dx}} & = & \displaystyle{x(\cos(\sqrt{x+1}))'+(x)'\cos(\sqrt{x+1})}\\ &&\\ & = & \displaystyle{x(-\sin(\sqrt{x+1}))(\sqrt{x+1})'+(1)\cos(\sqrt{x+1})}\\ &&\\ & = & \displaystyle{-x\sin(\sqrt{x+1})\frac{1}{2\sqrt{x+1}}(x+1)'+\cos(\sqrt{x+1})}\\ &&\\ & = & \displaystyle{\frac{-x\sin(\sqrt{x+1})}{2\sqrt{x+1}}+\cos(\sqrt{x+1}).} \end{array}} |
(c)
| Step 1: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sin^{-1}(x).} Then, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(y)=x} |
| for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigg[-\frac{\pi}{2},\frac{\pi}{2}\bigg].} |
| Using implicit differentiation, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(y) \frac{dy}{dx}=1.} |
| Solving for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx},} we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=\frac{1}{\cos(y)}.} |
| Step 2: |
|---|
| Now, since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(y)=x,} we have the following diagram. |
| (Insert diagram) |
| Therefore, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(y)=\sqrt{1-x^2}.} |
| Hence, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{dy}{dx}} & = & \displaystyle{\frac{1}{\cos(y)}}\\ &&\\ & = & \displaystyle{\frac{1}{\sqrt{1-x^2}}.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3(x^2+3)^2(-8x)}{(x^2-1)^4}} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-x\sin(\sqrt{x+1})}{2\sqrt{x+1}}+\cos(\sqrt{x+1})} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{1-x^2}}} |