Difference between revisions of "009B Sample Final 2, Problem 7"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Evaluate the following integrals or show that they are divergent: <span class="exam">(a)  <math>\int_1^\infty \frac{\ln x}{x^4}~dx</math> <span class...")
 
 
Line 74: Line 74:
 
|First, we write
 
|First, we write
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx=\lim_{a\rightarrow 0} \int_a^1 \frac{3\ln x}{\sqrt{x}}~dx.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx=\lim_{a\rightarrow 0^+} \int_a^1 \frac{3\ln x}{\sqrt{x}}~dx.</math>
 
|-
 
|-
 
|Now, we use integration by parts.
 
|Now, we use integration by parts.
Line 85: Line 85:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0} (3\ln x)(2\sqrt{x})\bigg|_a^1-\int_a^1 \frac{6}{\sqrt{x}}~dx}\\
+
\displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0^+} (3\ln x)(2\sqrt{x})\bigg|_a^1-\int_a^1 \frac{6}{\sqrt{x}}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{a\rightarrow 0} 6\sqrt{x}\ln(x)-12\sqrt{x}\bigg|_a^1.}
+
& = & \displaystyle{\lim_{a\rightarrow 0^+} 6\sqrt{x}\ln(x)-12\sqrt{x}\bigg|_a^1.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 97: Line 97:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0} (6\sqrt{1}\ln(1)-12\sqrt{1})-(6\sqrt{a}\ln(a)-12\sqrt{a})}\\
+
\displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0^+} (6\sqrt{1}\ln(1)-12\sqrt{1})-(6\sqrt{a}\ln(a)-12\sqrt{a})}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{a\rightarrow 0} -12 -6\sqrt{a}\ln(a) +12\sqrt{a}}\\
+
& = & \displaystyle{\lim_{a\rightarrow 0^+} -12 -6\sqrt{a}\ln(a) +12\sqrt{a}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{a\rightarrow 0} -12 -6\sqrt{a}\ln(a)+0}\\
+
& = & \displaystyle{\lim_{a\rightarrow 0^+} -12 -6\sqrt{a}\ln(a)+0}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{x\rightarrow 0} -12-6\sqrt{x}\ln(x)}\\
+
& = & \displaystyle{\lim_{x\rightarrow 0^+} -12-6\sqrt{x}\ln(x)}\\
 
&&\\
 
&&\\
& = & \displaystyle{-12-\lim_{x\rightarrow 0} \frac{6\ln(x)}{\frac{1}{\sqrt{x}}}}\\
+
& = & \displaystyle{-12-\lim_{x\rightarrow 0^+} \frac{6\ln(x)}{\frac{1}{\sqrt{x}}}}\\
 
&&\\
 
&&\\
& \overset{L'H}{=} & \displaystyle{-12-\lim_{x\rightarrow 0} \frac{\frac{6}{x}}{-\frac{1}{2x^{3/2}}}}\\
+
& \overset{L'H}{=} & \displaystyle{-12-\lim_{x\rightarrow 0^+} \frac{\frac{6}{x}}{-\frac{1}{2x^{3/2}}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{-12+\lim_{x\rightarrow 0} 12\sqrt{x}}\\
+
& = & \displaystyle{-12+\lim_{x\rightarrow 0^+} 12\sqrt{x}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{-12.}
 
& = & \displaystyle{-12.}

Latest revision as of 17:08, 20 May 2017

Evaluate the following integrals or show that they are divergent:

(a)  

(b)  

Foundations:  
1. How could you write   so that you can integrate?

        You can write  

2. How could you write  

        The problem is that    is not continuous at  

        So, you can write  


Solution:

(a)

Step 1:  
First, we write
       
Now, we use integration by parts.
Let    and  
Then,    and  
Using integration by parts, we get
       
Step 2:  
Now, using L'Hopital's Rule, we get
       

(b)

Step 1:  
First, we write
       
Now, we use integration by parts.
Let    and  
Then,    and  
Using integration by parts, we get
       
Step 2:  
Now, using L'Hopital's Rule, we get
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam