Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Line 18: | Line 18: | ||
|'''2.''' Recall the Pythagorean identity | |'''2.''' Recall the Pythagorean identity | ||
|- | |- | ||
− | | <math style="vertical-align: -5px">\sin^2(x) | + | | <math style="vertical-align: -5px">\sin^2(x)+\cos^2(x)=1.</math> |
|} | |} | ||
Line 88: | Line 88: | ||
& = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | & = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\int ~dx+\int\frac{1-x}{2x^2+x}~dx}.\\ | + | & = & \displaystyle{\int 1~dx+\int\frac{1-x}{2x^2+x}~dx}.\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 123: | Line 123: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ | + | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int 1~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx.}\\ | & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx.}\\ | ||
Line 152: | Line 152: | ||
|- | |- | ||
| | | | ||
− | <math>\int \frac{2x^2+1}{2x^2+x}~dx | + | <math>\begin{array}{rcl} |
+ | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x-\frac{3}{2}\ln (2x+1) +C.} | ||
+ | \end{array}</math> | ||
|} | |} | ||