Difference between revisions of "009A Sample Midterm 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 85: Line 85:
 
|First, we use the Quotient Rule to get
 
|First, we use the Quotient Rule to get
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)((5x^2+7x)^3)'-(5x^2+7x)^3(\ln(x^2+1))'}{(\ln(x^2+1))^2}.</math>
 
|}
 
|}
  
Line 94: Line 94:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{h'(x)} & = & \displaystyle{\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}}\\
+
\displaystyle{h'(x)} & = & \displaystyle{\frac{\ln(x^2+1)((5x^2+7x)^3)'-(5x^2+7x)^3(\ln(x^2+1))'}{(\ln(x^2+1))^2}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(5x^2+7x)'-(5x^2+7x)^2\frac{1}{x^2+1}(x^2+1)'}{(\ln(x^2+1))^2}}\\
+
& = & \displaystyle{\frac{\ln(x^2+1)3(5x^2+7x)^2(5x^2+7x)'-(5x^2+7x)^3\frac{1}{x^2+1}(x^2+1)'}{(\ln(x^2+1))^2}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}.}
+
& = & \displaystyle{\frac{\ln(x^2+1)3(5x^2+7x)^2(10x+7)-(5x^2+7x)^3\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 110: Line 110:
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>g'(x)=\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>g'(x)=\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math>
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)3(5x^2+7x)^2(10x+7)-(5x^2+7x)^3\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:41, 3 May 2017

Find the derivatives of the following functions. Do not simplify.

(a)  

(b)  

(c)  


Foundations:  
1. Chain Rule
       
2. Trig Derivatives
       
3. Quotient Rule
       
4. Derivative of natural logarithm
       


Solution:

(a)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(b)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(c)

Step 1:  
First, we use the Quotient Rule to get
       
Step 2:  
Now, we use the Chain Rule to get
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam