Difference between revisions of "009C Sample Midterm 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
!Step 1:  
 
!Step 1:  
 
|-
 
|-
|
+
|Assume that the power series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; converges.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; be the radius of convergence of this power series.
 +
|-
 +
|So, the power series
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp;
 +
|-
 +
|converges in the interval &nbsp;<math style="vertical-align: -5px">(-R,R).</math>&nbsp;
 
|}
 
|}
  

Revision as of 16:11, 23 April 2017

If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n}   converges, does it follow that the following series converges?

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n(-x)^n }


Foundations:  
If a power series converges, then it has a nonempty interval of convergence.


Solution:

(a)

Step 1:  
Assume that the power series  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n}   converges.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R}   be the radius of convergence of this power series.
So, the power series
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n}  
converges in the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-R,R).}  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
    (a)     converges
    (b)     converges

Return to Sample Exam