Difference between revisions of "009C Sample Midterm 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">If  <math>\sum_{n=0}^\infty c_nx^n</math>  converges, does it follow that the following series converges? <span class="exam">(a)  <math>\sum...")
 
Line 10: Line 10:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|A geometric series &nbsp;<math>\sum_{n=0}^{\infty} ar^n</math>&nbsp; converges if &nbsp;<math style="vertical-align: -6px">|r|<1.</math>
+
|
 
|}
 
|}
  
Line 20: Line 20:
 
!Step 1: &nbsp;
 
!Step 1: &nbsp;
 
|-
 
|-
|First, we notice that &nbsp;<math>\sum_{n=0}^\infty c_nx^n</math>&nbsp; is a geometric series.
+
|
|-
 
|We have &nbsp;<math style="vertical-align: -1px">r=x.</math>
 
|-
 
|Since this series converges,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>|r|=|x|<1.</math>
 
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
|-
 
|The series &nbsp;<math>\sum_{n=0} c_n\bigg(\frac{x}{2}\bigg)^n</math>&nbsp; is also a geometric series.
 
|-
 
|For this series, &nbsp;<math style="vertical-align: -13px">r=\frac{x}{2}.</math>
 
|-
 
|Now, we notice
 
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{|r|} & = & \displaystyle{\bigg|\frac{x}{2}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\frac{|x|}{2}}\\
 
&&\\
 
& < & \displaystyle{\frac{1}{2}}
 
\end{array}</math>
 
|-
 
|since &nbsp;<math style="vertical-align: -5px">|x|<1.</math>
 
|-
 
| Since &nbsp;<math style="vertical-align: -5px">|r|<1,</math>&nbsp; this series converges.
 
 
|}
 
|}
  
Line 56: Line 33:
 
!Step 1: &nbsp;
 
!Step 1: &nbsp;
 
|-
 
|-
|First, we notice that &nbsp;<math>\sum_{n=0}^\infty c_nx^n</math>&nbsp; is a geometric series.
+
|
|-
 
|We have &nbsp;<math style="vertical-align: -1px">r=x.</math>
 
|-
 
|Since this series converges,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>|r|=|x|<1.</math>
 
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
|-
 
|The series &nbsp;<math>\sum_{n=0}^\infty c_n(-x)^n</math>&nbsp; is also a geometric series.
 
|-
 
|For this series, &nbsp;<math style="vertical-align: -1px">r=-x.</math>
 
|-
 
|Now, we notice
 
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{|r|} & = & \displaystyle{|-x|}\\
 
&&\\
 
& = & \displaystyle{|x|}\\
 
&&\\
 
& < & \displaystyle{1}
 
\end{array}</math>
 
|-
 
|since &nbsp;<math style="vertical-align: -5px">|x|<1.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">|r|<1,</math>&nbsp; this series converges.
 
 
|}
 
|}
  

Revision as of 14:45, 23 April 2017

If    converges, does it follow that the following series converges?

(a)  

(b)  


Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
    (a)     converges (by the geometric series test)
    (b)     converges (by the geometric series test)

Return to Sample Exam