Difference between revisions of "009C Sample Midterm 2, Problem 1"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Evaluate: <span class="exam">(a)  <math>\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}</math> <span class="exam">(b)  <math>\su...")
 
Line 97: Line 97:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}} & = & \displaystyle{\frac{\lim_{n\rightarrow \infty} 1}{\lim_{n\rightarrow \infty} \big(\frac{n-4}{n}\big)^n}}\\
+
\displaystyle{\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}} & = & \displaystyle{\frac{\displaystyle{\lim_{n\rightarrow \infty} 1}}{\displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n-4}{n}\bigg)^n}}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{1}{e^{-4}}}\\
 
& = & \displaystyle{\frac{1}{e^{-4}}}\\

Revision as of 09:30, 14 April 2017

Evaluate:

(a)  

(b)  


Foundations:  
1. L'Hôpital's Rule

        Suppose that    and    are both zero or both  

        If    is finite or  

        then  

2. The sum of a convergent geometric series is  
        where    is the ratio of the geometric series
        and    is the first term of the series.


Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       
Now, we have

       

(b)

Step 1:  
First, we not that this is a geometric series with  
Since  
this series converges.
Step 2:  
Now, we need to find the sum of this series.
The first term of the series is  
Hence, the sum of the series is

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam