Difference between revisions of "009A Sample Midterm 1, Problem 4"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Find the derivatives of the following functions. Do not simplify. <span class="exam">(a)   <math style="vertical-align: -5px">f(x)=\sqrt{x}(x^2+2)</ma...")
 
Line 96: Line 96:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x)</math>  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>f'(x)=\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x)</math>  
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}</math>  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>g'(x)=\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}</math>  
 
|-
 
|-
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}</math>  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>h'(x)=\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}</math>  
 
|}
 
|}
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:53, 13 April 2017

Find the derivatives of the following functions. Do not simplify.

(a)  

(b)   where

(c)  


Foundations:  
1. Product Rule
       
2. Quotient Rule
       
3. Chain Rule
       


Solution:

(a)

Step 1:  
Using the Product Rule, we have
       
Step 2:  
Now, we have
       

(b)

Step 1:  
Using the Quotient Rule, we have
       
Step 2:  
Now, we have
       

(c)

Step 1:  
Using the Quotient Rule, we have
       
Step 2:  
Now, using the Chain Rule, we have
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam