Difference between revisions of "009A Sample Midterm 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Find the derivatives of the following functions. Do not simplify. <span class="exam">(a)   <math style="vertical-align: -5px">f(x)=\tan^3(7x^2+5) </m...")
 
Line 106: Line 106:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)</math>  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>f'(x)=3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)</math>  
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>g'(x)=\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math>
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:52, 13 April 2017

Find the derivatives of the following functions. Do not simplify.

(a)  

(b)  

(c)  


Foundations:  
1. Chain Rule
       
2. Trig Derivatives
       
3. Quotient Rule
       
4. Derivative of natural logarithm
       


Solution:

(a)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(b)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(c)

Step 1:  
First, we use the Quotient Rule to get
       
Step 2:  
Now, we use the Chain Rule to get
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam