Difference between revisions of "009A Sample Midterm 3, Problem 3"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Use the definition of the derivative to compute   <math>\frac{dy}{dx}</math>   for  <math style="vertical-align: -4px">y=3\sqrt{-2x+5}.</mat...")
 
Line 62: Line 62:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-\frac{3}{\sqrt{-2x+5}}</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{dy}{dx}=-\frac{3}{\sqrt{-2x+5}}</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:44, 13 April 2017

Use the definition of the derivative to compute   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}}   for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=3\sqrt{-2x+5}.}


Foundations:  
Recall
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}}


Solution:

Step 1:  
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=3\sqrt{-2x+5}.}
Using the limit definition of the derivative, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2(x+h)+5}-3\sqrt{-2x+5}}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2x+-2h+5}-3\sqrt{-2x+5}}{h}}\\ &&\\ & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{\sqrt{-2x+-2h+5}-\sqrt{-2x+5}}{h}.} \end{array}}

Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{(\sqrt{-2x+-2h+5}-\sqrt{-2x+5})}{h} \frac{(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}{(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\ &&\\ & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{(-2x+-2h+5)-(-2x+5)}{h(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\ &&\\ & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{-2h}{h(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\ &&\\ & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{-2}{\sqrt{-2x+-2h+5}+\sqrt{-2x+5}}}\\ &&\\ & = & \displaystyle{3\frac{-2}{\sqrt{-2x+5}+\sqrt{-2x+5}}}\\ &&\\ & = & \displaystyle{-\frac{3}{\sqrt{-2x+5}}.} \end{array}}


Final Answer:  
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=-\frac{3}{\sqrt{-2x+5}}}

Return to Sample Exam