Difference between revisions of "009B Sample Final 1, Problem 1"
Jump to navigation
Jump to search
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">Suppose the speed of a bee is given in the table. |
− | |||
− | < | + | <table border="1" cellspacing="0" cellpadding="6" align = "center"> |
+ | <tr> | ||
+ | <td align = "center">Time (s)</td> | ||
+ | <td align = "center">Speed (cm/s)</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>0.0</math></td> | ||
+ | <td align = "center"><math> 125.0 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>2.0</math></td> | ||
+ | <td align = "center"><math> 118.0</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>4.0</math></td> | ||
+ | <td align = "center"><math> 116.0 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>6.0</math></td> | ||
+ | <td align = "center"><math> 112.0 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>8.0</math></td> | ||
+ | <td align = "center"><math> 120.0 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>10.0</math></td> | ||
+ | <td align = "center"><math> 113.0 </math></td> | ||
+ | </tr> | ||
− | < | + | </table> |
− | <span class="exam"> | + | <span class="exam">(a) Using the given measurements, find the left-hand estimate for the distance the bee moved during this experiment. |
+ | |||
+ | <span class="exam">(b) Using the given measurements, find the midpoint estimate for the distance the bee moved during this experiment. | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' The height of each rectangle in the left-hand Riemann sum is given by choosing |
|- | |- | ||
− | | | + | | the left endpoints of each interval. |
|- | |- | ||
− | |''' | + | |'''3.''' The height of each rectangle in the midpoint Riemann sum is given by |
|- | |- | ||
− | | | + | | <math style="vertical-align: -14px">\frac{f(a)+f(b)}{2}</math> where <math>a</math> is the left endpoint of the interval and <math style="vertical-align: -1px">b</math> is the right endpoint of the interval. |
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 27: | Line 57: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |To estimate the distance the bee moved during this experiment, |
|- | |- | ||
− | | | + | |we need to calculate the left-hand Riemann sum over the interval <math style="vertical-align: -5px">[0,10].</math> |
|- | |- | ||
− | | | + | |Based on the information given in the table, we will have <math style="vertical-align: 0px">5</math> rectangles and |
|- | |- | ||
− | | | + | |each rectangle will have width <math style="vertical-align: 0px">2.</math> |
|} | |} | ||
Line 39: | Line 69: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Let <math style="vertical-align: -5px">s(t)</math> be the speed of the bee during the experiment. |
|- | |- | ||
− | | | + | |Then, the left-hand Riemann sum is |
− | |||
− | |||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
+ | \displaystyle{2(s(0)+s(2)+s(4)+s(6)+s(8))} & = & \displaystyle{2(125+118+116+112+120)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{1182\text{ cm}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 54: | Line 86: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |To estimate the distance the bee moved during this experiment, |
|- | |- | ||
− | | | + | |we need to calculate the Riemann sum using the midpoint rule over the interval <math style="vertical-align: -5px">[0,10].</math> |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |Based on the information given in the table, we will have <math style="vertical-align: 0px">5</math> rectangles and |
|- | |- | ||
− | | | + | |each rectangle will have width <math style="vertical-align: 0px">2.</math> |
− | |||
|} | |} | ||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 2: |
|- | |- | ||
− | | | + | |Let <math style="vertical-align: -5px">s(t)</math> be the speed of the bee during the experiment. |
|- | |- | ||
− | | | + | |Then, the Riemann sum using the midpoint rule is |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
− | \displaystyle{\ | + | \displaystyle{2\bigg(\frac{s(0)+s(2)}{2}+\frac{s(2)+s(4)}{2}+\frac{s(4)+s(6)}{2}+\frac{s(6)+s(8)}{2}+\frac{s(8)+s(10)}{2}\bigg)} & = & \displaystyle{1170\text{ cm}.} |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | & = & \displaystyle{ | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math style="vertical-align: 0px"> | + | | '''(a)''' <math style="vertical-align: 0px">1182\text{ cm}</math> |
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' <math style="vertical-align: 0px">1170\text{ cm}</math> |
− | |||
− | |||
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
− | |||
− |
Latest revision as of 08:40, 10 April 2017
Suppose the speed of a bee is given in the table.
Time (s) | Speed (cm/s) |
(a) Using the given measurements, find the left-hand estimate for the distance the bee moved during this experiment.
(b) Using the given measurements, find the midpoint estimate for the distance the bee moved during this experiment.
Foundations: |
---|
1. The height of each rectangle in the left-hand Riemann sum is given by choosing |
the left endpoints of each interval. |
3. The height of each rectangle in the midpoint Riemann sum is given by |
where is the left endpoint of the interval and is the right endpoint of the interval. |
Solution:
(a)
Step 1: |
---|
To estimate the distance the bee moved during this experiment, |
we need to calculate the left-hand Riemann sum over the interval |
Based on the information given in the table, we will have rectangles and |
each rectangle will have width |
Step 2: |
---|
Let be the speed of the bee during the experiment. |
Then, the left-hand Riemann sum is |
|
(b)
Step 1: |
---|
To estimate the distance the bee moved during this experiment, |
we need to calculate the Riemann sum using the midpoint rule over the interval |
Based on the information given in the table, we will have rectangles and |
each rectangle will have width |
Step 2: |
---|
Let be the speed of the bee during the experiment. |
Then, the Riemann sum using the midpoint rule is |
|
Final Answer: |
---|
(a) |
(b) |