Difference between revisions of "009A Sample Final 1, Problem 10"
Jump to navigation
Jump to search
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<span class="exam">Consider the following continuous function: | <span class="exam">Consider the following continuous function: | ||
− | + | ::<math>f(x)=x^{1/3}(x-8)</math> | |
− | <span class="exam">defined on the closed, bounded interval <math style="vertical-align: -5px">[-8,8]</math>. | + | <span class="exam">defined on the closed, bounded interval <math style="vertical-align: -5px">[-8,8]</math>. |
− | + | <span class="exam">(a) Find all the critical points for <math style="vertical-align: -5px">f(x)</math>. | |
− | + | <span class="exam">(b) Determine the absolute maximum and absolute minimum values for <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[-8,8]</math>. | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> |
|- | |- | ||
| | | | ||
− | + | Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | |
|- | |- | ||
− | | | + | |'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
− | + | we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b).</math> | |
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 33: | Line 30: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |To find the critical points, first we need to find <math style="vertical-align: -5px">f'(x).</math> | + | |To find the critical points, first we need to find <math style="vertical-align: -5px">f'(x).</math> |
|- | |- | ||
|Using the Product Rule, we have | |Using the Product Rule, we have | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\ | \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\ | ||
&&\\ | &&\\ | ||
Line 48: | Line 45: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Notice <math style="vertical-align: -5px">f'(x)</math> is undefined when <math style="vertical-align: -1px">x=0.</math> | + | |Notice <math style="vertical-align: -5px">f'(x)</math> is undefined when <math style="vertical-align: -1px">x=0.</math> |
|- | |- | ||
− | |Now, we need to set <math style="vertical-align: -5px">f'(x)=0.</math> | + | |Now, we need to set <math style="vertical-align: -5px">f'(x)=0.</math> |
|- | |- | ||
|So, we get | |So, we get | ||
|- | |- | ||
| | | | ||
− | + | <math>-x^{\frac{1}{3}}\,=\,\frac{x-8}{3x^{\frac{2}{3}}}.</math> | |
|- | |- | ||
− | |We cross multiply to get | + | |We cross multiply to get <math style="vertical-align: 1px">-3x=x-8.</math> |
|- | |- | ||
− | | | + | |Solving, we get <math style="vertical-align: -1px">x=2.</math> |
− | |||
|- | |- | ||
− | + | |Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -5px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6)).</math> | |
− | |||
− | |Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -5px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6)).</math> | ||
|} | |} | ||
Line 72: | Line 66: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We need to compare the values of <math style="vertical-align: -5px">f(x)</math>& | + | |We need to compare the values of <math style="vertical-align: -5px">f(x)</math> at the critical points and at the endpoints of the interval. |
|- | |- | ||
− | |Using the equation given, we have <math style="vertical-align: -5px">f(-8)=32</math>& | + | |Using the equation given, we have <math style="vertical-align: -5px">f(-8)=32</math> and <math style="vertical-align: -5px">f(8)=0.</math> |
|} | |} | ||
Line 80: | Line 74: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Comparing the values in Step 1 with the critical points in | + | |Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">32</math> |
|- | |- | ||
− | |and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math>& | + | |and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math> |
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)'''& | + | | '''(a)''' <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math> |
|- | |- | ||
− | |'''(b)'''& | + | | '''(b)''' The absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">32</math> and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math> |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 08:18, 10 April 2017
Consider the following continuous function:
defined on the closed, bounded interval .
(a) Find all the critical points for .
(b) Determine the absolute maximum and absolute minimum values for on the interval .
Foundations: |
---|
1. To find the critical points for we set and solve for |
Also, we include the values of where is undefined. |
2. To find the absolute maximum and minimum of on an interval |
we need to compare the values of our critical points with and |
Solution:
(a)
Step 1: |
---|
To find the critical points, first we need to find |
Using the Product Rule, we have |
|
Step 2: |
---|
Notice is undefined when |
Now, we need to set |
So, we get |
|
We cross multiply to get |
Solving, we get |
Thus, the critical points for are and |
(b)
Step 1: |
---|
We need to compare the values of at the critical points and at the endpoints of the interval. |
Using the equation given, we have and |
Step 2: |
---|
Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for is |
and the absolute minimum value for is |
Final Answer: |
---|
(a) and |
(b) The absolute maximum value for is and the absolute minimum value for is |