Difference between revisions of "009A Sample Final 1, Problem 9"
Jump to navigation
Jump to search
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam">Given the function <math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>, | + | <span class="exam">Given the function <math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>, |
− | <span class="exam">a) Find the intervals in which the function increases or decreases. | + | <span class="exam">(a) Find the intervals in which the function increases or decreases. |
− | <span class="exam">b) Find the local maximum and local minimum values. | + | <span class="exam">(b) Find the local maximum and local minimum values. |
− | <span class="exam">c) Find the intervals in which the function concaves upward or concaves downward. | + | <span class="exam">(c) Find the intervals in which the function concaves upward or concaves downward. |
− | <span class="exam">d) Find the inflection point(s). | + | <span class="exam">(d) Find the inflection point(s). |
− | <span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>. | + | <span class="exam">(e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 16: | Line 16: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' <math style="vertical-align: -5px">f(x)</math>& | + | |'''1.''' <math style="vertical-align: -5px">f(x)</math> is increasing when <math style="vertical-align: -5px">f'(x)>0</math> and <math style="vertical-align: -5px">f(x)</math> is decreasing when <math style="vertical-align: -5px">f'(x)<0.</math> |
|- | |- | ||
|'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum. | |'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum. | ||
|- | |- | ||
− | |'''3.''' <math style="vertical-align: -5px">f(x)</math>& | + | |'''3.''' <math style="vertical-align: -5px">f(x)</math> is concave up when <math style="vertical-align: -5px">f''(x)>0</math> and <math style="vertical-align: -5px">f(x)</math> is concave down when <math style="vertical-align: -5px">f''(x)<0.</math> |
|- | |- | ||
− | |'''4.''' Inflection points occur when <math style="vertical-align: -5px">f''(x)=0.</math> | + | |'''4.''' Inflection points occur when <math style="vertical-align: -5px">f''(x)=0.</math> |
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 32: | Line 33: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We start by taking the derivative of <math style="vertical-align: -5px">f(x).</math>& | + | |We start by taking the derivative of <math style="vertical-align: -5px">f(x).</math> |
+ | |- | ||
+ | |We have <math style="vertical-align: -5px">f'(x)=3x^2-12x.</math> | ||
+ | |- | ||
+ | |Now, we set <math style="vertical-align: -5px">f'(x)=0.</math> So, we have | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -6px">0=3x(x-4).</math> |
|- | |- | ||
− | |Hence, we have <math style="vertical-align: 0px">x=0</math>& | + | |Hence, we have <math style="vertical-align: 0px">x=0</math> and <math style="vertical-align: -1px">x=4.</math> |
|- | |- | ||
− | |So, these values of <math style="vertical-align: 0px">x</math> break up the number line into 3 intervals: & | + | |So, these values of <math style="vertical-align: 0px">x</math> break up the number line into 3 intervals: |
+ | |- | ||
+ | | <math style="vertical-align: -5px">(-\infty,0),(0,4),(4,\infty).</math> | ||
|} | |} | ||
Line 46: | Line 53: | ||
|To check whether the function is increasing or decreasing in these intervals, we use testpoints. | |To check whether the function is increasing or decreasing in these intervals, we use testpoints. | ||
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=-1,~f'(x)=15>0.</math> | + | |For <math style="vertical-align: -5px">x=-1,~f'(x)=15>0.</math> |
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=1,~f'(x)=-9<0.</math> | + | |For <math style="vertical-align: -5px">x=1,~f'(x)=-9<0.</math> |
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=5,~f'(x)=15>0.</math> | + | |For <math style="vertical-align: -5px">x=5,~f'(x)=15>0.</math> |
|- | |- | ||
− | |Thus, <math style="vertical-align: -5px">f(x)</math>& | + | |Thus, <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty),</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math> |
|} | |} | ||
Line 60: | Line 67: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |By the First Derivative Test, the local maximum occurs at <math style="vertical-align: -1px">x=0</math> and the local minimum occurs at <math style="vertical-align: -1px">x=4.</math> | + | |By the First Derivative Test, the local maximum occurs at <math style="vertical-align: -1px">x=0</math> and the local minimum occurs at <math style="vertical-align: -1px">x=4.</math> |
|} | |} | ||
Line 66: | Line 73: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math> | + | |So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math> |
|} | |} | ||
Line 74: | Line 81: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x).</math> | + | |To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x).</math> |
|- | |- | ||
− | |We have <math style="vertical-align: -5px">f''(x)=6x-12.</math> | + | |We have <math style="vertical-align: -5px">f''(x)=6x-12.</math> |
|- | |- | ||
− | |We set <math style="vertical-align: -5px">f''(x)=0.</math> | + | |We set <math style="vertical-align: -5px">f''(x)=0.</math> |
|- | |- | ||
− | |So, we have | + | |So, we have |
|- | |- | ||
− | |This value breaks up the number line into two intervals: <math style="vertical-align: -5px">(-\infty,2),(2,\infty).</math> | + | | <math style="vertical-align: -1px">0=6x-12.</math> Hence, <math style="vertical-align: 0px">x=2.</math> |
+ | |- | ||
+ | |This value breaks up the number line into two intervals: | ||
+ | |- | ||
+ | | <math style="vertical-align: -5px">(-\infty,2),(2,\infty).</math> | ||
|} | |} | ||
Line 90: | Line 101: | ||
|Again, we use test points in these two intervals. | |Again, we use test points in these two intervals. | ||
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=0,</math>& | + | |For <math style="vertical-align: -5px">x=0,</math> we have <math style="vertical-align: -5px">f''(x)=-12<0.</math> |
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=3,</math>& | + | |For <math style="vertical-align: -5px">x=3,</math> we have <math style="vertical-align: -5px">f''(x)=6>0.</math> |
|- | |- | ||
− | |Thus, <math style="vertical-align: -5px">f(x)</math>& | + | |Thus, <math style="vertical-align: -5px">f(x)</math> is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math> |
|} | |} | ||
Line 100: | Line 111: | ||
!(d) | !(d) | ||
|- | |- | ||
− | | Using the information from part | + | | Using the information from part (c), there is one inflection point that occurs at <math style="vertical-align: 0px">x=2.</math> |
|- | |- | ||
− | |Now, we have <math style="vertical-align: -5px">f(2)=8-24+5=-11.</math> | + | |Now, we have <math style="vertical-align: -5px">f(2)=8-24+5=-11.</math> |
|- | |- | ||
− | |So, the inflection point is & | + | |So, the inflection point is <math style="vertical-align: -5px">(2,-11).</math> |
|} | |} | ||
Line 112: | Line 123: | ||
|[[File: 9AF1_9_GP.png|700px|center]] | |[[File: 9AF1_9_GP.png|700px|center]] | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math style="vertical-align: -5px">f(x)</math>& | + | | '''(a)''' <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty),</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math> |
|- | |- | ||
− | |'''(b)''' The local maximum value is <math style="vertical-align: -5px">f(0)=5,</math>& | + | | '''(b)''' The local maximum value is <math style="vertical-align: -5px">f(0)=5,</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math> |
|- | |- | ||
− | |'''(c)''' <math style="vertical-align: -5px">f(x)</math>& | + | | '''(c)''' <math style="vertical-align: -5px">f(x)</math> is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math> |
|- | |- | ||
− | |'''(d)''' <math style="vertical-align: -5px">(2,-11)</math> | + | | '''(d)''' <math style="vertical-align: -5px">(2,-11)</math> |
|- | |- | ||
− | |'''(e)''' See graph | + | | '''(e)''' See graph above. |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 08:17, 10 April 2017
Given the function ,
(a) Find the intervals in which the function increases or decreases.
(b) Find the local maximum and local minimum values.
(c) Find the intervals in which the function concaves upward or concaves downward.
(d) Find the inflection point(s).
(e) Use the above information (a) to (d) to sketch the graph of .
Foundations: |
---|
Recall: |
1. is increasing when and is decreasing when |
2. The First Derivative Test tells us when we have a local maximum or local minimum. |
3. is concave up when and is concave down when |
4. Inflection points occur when |
Solution:
(a)
Step 1: |
---|
We start by taking the derivative of |
We have |
Now, we set So, we have |
Hence, we have and |
So, these values of break up the number line into 3 intervals: |
Step 2: |
---|
To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
For |
For |
For |
Thus, is increasing on and decreasing on |
(b)
Step 1: |
---|
By the First Derivative Test, the local maximum occurs at and the local minimum occurs at |
Step 2: |
---|
So, the local maximum value is and the local minimum value is |
(c)
Step 1: |
---|
To find the intervals when the function is concave up or concave down, we need to find |
We have |
We set |
So, we have |
Hence, |
This value breaks up the number line into two intervals: |
Step 2: |
---|
Again, we use test points in these two intervals. |
For we have |
For we have |
Thus, is concave up on the interval and concave down on the interval |
(d) |
---|
Using the information from part (c), there is one inflection point that occurs at |
Now, we have |
So, the inflection point is |
(e) |
---|
Final Answer: |
---|
(a) is increasing on and decreasing on |
(b) The local maximum value is and the local minimum value is |
(c) is concave up on the interval and concave down on the interval |
(d) |
(e) See graph above. |