Difference between revisions of "009A Sample Final 1, Problem 6"
(Created page with "<span class="exam"> Consider the following function: ::::::<math>f(x)=3x-2\sin x+7</math> <span class="exam">a) Use the Intermediate Value Theorem to show that <math style="...") |
|||
| (3 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
<span class="exam"> Consider the following function: | <span class="exam"> Consider the following function: | ||
| − | + | ::<math>f(x)=3x-2\sin x+7</math> | |
| − | <span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>& | + | <span class="exam">(a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math> has at least one zero. |
| − | <span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>& | + | <span class="exam">(b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math> has at most one zero. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |'''1.''' '''Intermediate Value Theorem''' |
|- | |- | ||
| − | | | + | | If <math style="vertical-align: -5px">f(x)</math> is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: 0px">c</math> is any number |
|- | |- | ||
| | | | ||
| − | + | between <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b),</math> then there is at least one number <math style="vertical-align: 0px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math> | |
|- | |- | ||
| − | |'''2. Mean Value Theorem | + | |'''2.''' '''Mean Value Theorem''' |
| + | |- | ||
| + | | Suppose <math style="vertical-align: -5px">f(x)</math> is a function that satisfies the following: | ||
|- | |- | ||
| | | | ||
| − | + | <math style="vertical-align: -5px">f(x)</math> is continuous on the closed interval <math style="vertical-align: -5px">[a,b].</math> | |
|- | |- | ||
| | | | ||
| − | + | <math style="vertical-align: -5px">f(x)</math> is differentiable on the open interval <math style="vertical-align: -5px">(a,b).</math> | |
|- | |- | ||
| | | | ||
| − | + | Then, there is a number <math style="vertical-align: 0px">c</math> such that <math style="vertical-align: 0px">a<c<b</math> and <math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}.</math> | |
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
| Line 36: | Line 39: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First note that& | + | |First note that <math style="vertical-align: -5px">f(0)=7.</math> |
|- | |- | ||
| − | |Also,& | + | |Also, <math style="vertical-align: -5px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).</math> |
|- | |- | ||
| − | |Since& | + | |Since <math style="vertical-align: -5px">-1\leq \sin(x) \leq 1,</math> |
|- | |- | ||
| | | | ||
| − | + | <math>-2\leq -2\sin(x) \leq 2.</math> | |
|- | |- | ||
| − | |Thus,& | + | |Thus, <math style="vertical-align: -5px">-10\leq f(-5) \leq -6</math> and hence <math style="vertical-align: -5px">f(-5)<0.</math> |
|} | |} | ||
| Line 51: | Line 54: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Since <math style="vertical-align: -5px">f(-5)<0</math>& | + | |Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0,</math> there exists <math style="vertical-align: 0px">x</math> with <math style="vertical-align: 0px">-5<x<0</math> such that |
|- | |- | ||
| − | |<math style="vertical-align: -5px">f(x)=0</math>& | + | |<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero. |
|} | |} | ||
| Line 61: | Line 64: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |Suppose that <math style="vertical-align: -5px">f(x)</math> has more than one zero. So, there exist <math style="vertical-align: -4px">a,b</math> such that & | + | |Suppose that <math style="vertical-align: -5px">f(x)</math> has more than one zero. So, there exist <math style="vertical-align: -4px">a,b</math> with <math style="vertical-align: 0px">a<b</math> such that <math style="vertical-align: -5px">f(a)=f(b)=0.</math> |
|- | |- | ||
| − | |Then, by the Mean Value Theorem, there exists <math style="vertical-align: 0px">c</math> with & | + | |Then, by the Mean Value Theorem, there exists <math style="vertical-align: 0px">c</math> with <math style="vertical-align: 0px">a<c<b</math> such that <math style="vertical-align: -5px">f'(c)=0.</math> |
|} | |} | ||
| Line 69: | Line 72: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>& | + | |We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math> |
| + | |- | ||
| + | |Since <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math> | ||
| + | |- | ||
| + | | <math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math> | ||
|- | |- | ||
| − | | | + | |So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math> |
|- | |- | ||
| − | |which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> Thus, <math style="vertical-align: -5px">f(x)</math>& | + | |which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> Thus, <math style="vertical-align: -5px">f(x)</math> has at most one zero. |
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' See solution above. |
| − | |||
| − | |||
|- | |- | ||
| − | |'''(b)''' See | + | | '''(b)''' See solution above. |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Latest revision as of 08:12, 10 April 2017
Consider the following function:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=3x-2\sin x+7}
(a) Use the Intermediate Value Theorem to show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at least one zero.
(b) Use the Mean Value Theorem to show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at most one zero.
| Foundations: |
|---|
| 1. Intermediate Value Theorem |
| If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is continuous on a closed interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} is any number |
|
between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(b),} then there is at least one number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} in the closed interval such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=c.} |
| 2. Mean Value Theorem |
| Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is a function that satisfies the following: |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is continuous on the closed interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b].} |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is differentiable on the open interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b).} |
|
Then, there is a number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<c<b} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=\frac{f(b)-f(a)}{b-a}.} |
Solution:
(a)
| Step 1: |
|---|
| First note that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)=7.} |
| Also, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \sin(x) \leq 1,} |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2\leq -2\sin(x) \leq 2.} |
| Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -10\leq f(-5) \leq -6} and hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0.} |
| Step 2: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)>0,} there exists Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5<x<0} such that |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=0} by the Intermediate Value Theorem. Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at least one zero. |
(b)
| Step 1: |
|---|
| Suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has more than one zero. So, there exist Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,b} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<b} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a)=f(b)=0.} |
| Then, by the Mean Value Theorem, there exists Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<c<b} such that |
| Step 2: |
|---|
| We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3-2\cos(x).} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \cos(x)\leq 1,} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 \leq -2\cos(x)\leq 2.} |
| So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\leq f'(x) \leq 5,} |
| which contradicts Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=0.} Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at most one zero. |
| Final Answer: |
|---|
| (a) See solution above. |
| (b) See solution above. |