Difference between revisions of "009A Sample Final 1, Problem 5"
Jump to navigation
Jump to search
(2 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''The Pythagorean Theorem''' |
|- | |- | ||
− | | | + | | For a right triangle with side lengths <math style="vertical-align: -4px">a,b,c</math> where <math style="vertical-align: 0px">c</math> is the length of the |
|- | |- | ||
| | | | ||
− | + | hypotenuse, we have <math style="vertical-align: -2px">a^2+b^2=c^2.</math> | |
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 21: | Line 22: | ||
|[[File:9AF_5_GP.png|center|550px]] | |[[File:9AF_5_GP.png|center|550px]] | ||
|- | |- | ||
− | |From the diagram, we have <math style="vertical-align: -3px">30^2+h^2=s^2</math> by the Pythagorean Theorem. | + | |From the diagram, we have <math style="vertical-align: -3px">30^2+h^2=s^2</math> by the Pythagorean Theorem. |
|- | |- | ||
|Taking derivatives, we get | |Taking derivatives, we get | ||
|- | |- | ||
| | | | ||
− | + | <math>2hh'=2ss'.</math> | |
|} | |} | ||
Line 32: | Line 33: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |If& | + | |If <math style="vertical-align: -4px">s=50,</math> then |
|- | |- | ||
− | | | + | | <math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math> |
|- | |- | ||
− | |Solving for& | + | |So, we have |
+ | |- | ||
+ | | <math style="vertical-align: -5px">2(40)6=2(50)s'.</math> | ||
+ | |- | ||
+ | |Solving for <math style="vertical-align: -5px">s',</math> we get <math style="vertical-align: -14px">s'=\frac{24}{5} \text{ m/s.}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -14px">s'=\frac{24}{5} \text{ m/s}</math> |
− | |||
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 08:12, 10 April 2017
A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing
when 50 (meters) of the string has been let out?
Foundations: |
---|
The Pythagorean Theorem |
For a right triangle with side lengths where is the length of the |
hypotenuse, we have |
Solution:
Step 1: |
---|
From the diagram, we have by the Pythagorean Theorem. |
Taking derivatives, we get |
|
Step 2: |
---|
If then |
So, we have |
Solving for we get |
Final Answer: |
---|