Difference between revisions of "009B Sample Midterm 3, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
[[File:9B_SM3_1_GP.png|right|375px]]
 
[[File:9B_SM3_1_GP.png|right|375px]]
  
<span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math>
+
<span class="exam">Divide the interval &nbsp;<math style="vertical-align: -5px">[0,\pi]</math>&nbsp; into four subintervals of equal length &nbsp; <math>\frac{\pi}{4}</math> &nbsp; and compute the right-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">y=\sin (x).</math>
  
  
Line 7: Line 7:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
||Recall:
+
|
 +
'''1.''' The height of each rectangle in the right-hand Riemann sum
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; is given by choosing the right endpoint of the interval.
::'''1.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
 
 
|-
 
|-
 
|
 
|
::'''2.''' See the Riemann sums (insert link) for more information.
+
'''2.''' See the Riemann sums (insert link) for more information.
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 20: Line 21:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -5px">f(x)=\sin(x).</math> Each interval has length <math>\frac{\pi}{4}.</math>  
+
|Let &nbsp;<math style="vertical-align: -5px">f(x)=\sin(x).</math>  
 
|-
 
|-
|So, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is
+
|Each interval has length &nbsp;<math>\frac{\pi}{4}.</math>
 +
|-
 +
|Therefore, the right-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on the interval &nbsp;<math style="vertical-align: -5px">[0,\pi]</math>&nbsp; is
 
|-
 
|-
 
|
 
|
::<math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math>
 
|}
 
|}
  
Line 34: Line 37:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)}\\
 
\displaystyle{\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)}\\
 
&&\\
 
&&\\
Line 40: Line 43:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; <math>\frac{\pi}{4}(\sqrt{2}+1)</math>
+
|&nbsp;&nbsp; &nbsp; &nbsp; <math>\frac{\pi}{4}(\sqrt{2}+1)</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:18, 9 April 2017

9B SM3 1 GP.png

Divide the interval    into four subintervals of equal length     and compute the right-endpoint Riemann sum of  


Foundations:  

1. The height of each rectangle in the right-hand Riemann sum

        is given by choosing the right endpoint of the interval.

2. See the Riemann sums (insert link) for more information.


Solution:

Step 1:  
Let  
Each interval has length  
Therefore, the right-endpoint Riemann sum of    on the interval    is

       

Step 2:  
Thus, the right-endpoint Riemann sum is

       


Final Answer:  
      

Return to Sample Exam