Difference between revisions of "009B Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> A particle moves along a straight line with velocity given by: |
− | :: | + | ::<math>v(t)=-32t+200</math> |
− | + | <span class="exam">feet per second. Determine the total distance traveled by the particle | |
+ | |||
+ | <span class="exam">from time <math style="vertical-align: 0px">t=0</math> to time <math style="vertical-align: -1px">t=10.</math> | ||
Line 9: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |How | + | |'''1.''' How are the velocity function <math style="vertical-align: -5px">v(t)</math> and the position function <math style="vertical-align: -5px">s(t)</math> related? |
+ | |- | ||
+ | | | ||
+ | They are related by the equation <math style="vertical-align: -5px">v(t)=s'(t).</math> | ||
+ | |- | ||
+ | |'''2.''' If we calculate <math style="vertical-align: -14px">\int_a^b v(t)~dt,</math> what are we calculating? | ||
|- | |- | ||
| | | | ||
− | + | We are calculating <math style="vertical-align: -5px">s(b)-s(a).</math> | |
|- | |- | ||
| | | | ||
− | :: | + | This is the displacement of the particle from <math style="vertical-align: 0px">t=a</math> to <math style="vertical-align: 0px">t=b.</math> |
+ | |- | ||
+ | |'''3.''' If we calculate <math style="vertical-align: -14px">\int_a^b |v(t)|~dt,</math> what are we calculating? | ||
+ | |- | ||
+ | | | ||
+ | We are calculating the total distance traveled by the particle from <math style="vertical-align: 0px">t=a</math> to <math style="vertical-align: 0px">t=b.</math> | ||
|} | |} | ||
+ | |||
+ | |||
'''Solution:''' | '''Solution:''' | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |To calculate the total distance the particle traveled from <math style="vertical-align: -1px">t=0</math> to <math style="vertical-align: -5px">t=10,</math> |
|- | |- | ||
− | | <math | + | |we need to calculate |
+ | |- | ||
+ | | <math>\int_0^{10} |v(t)|~dt=\int_0^{10} |-32t+200|~dt.</math> | ||
|} | |} | ||
Line 31: | Line 46: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |We | + | |We need to figure out when <math style="vertical-align: -2px">-32t+200</math> is positive and negative in the interval <math style="vertical-align: -6px">[0,10].</math> |
|- | |- | ||
− | | | + | |We set |
|- | |- | ||
− | | | + | | <math style="vertical-align: -2px">-32t+200=0</math> |
|- | |- | ||
− | | | + | |and solve for <math style="vertical-align: -1px">t.</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | |We | + | |We get |
|- | |- | ||
− | | | + | | <math style="vertical-align: -1px">t=6.25.</math> |
|- | |- | ||
− | | | + | |Then, we use test points to see that <math style="vertical-align: -2px">-32t+200</math> is positive from <math style="vertical-align: -6px">[0,6.25]</math> |
|- | |- | ||
− | | | + | |and negative from <math>[6.25,10].</math> |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 3: |
|- | |- | ||
− | | | + | |Therefore, we get |
|- | |- | ||
− | | <math | + | | |
− | + | <math>\begin{array}{rcl} | |
− | + | \displaystyle{\int_0^{10} |-32t+200|~dt} & = & \displaystyle{\int_0^{6.25} -32t+200~dt+\int_{6.25}^{10}-(-32t+200)~dt}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{\left. (-16t^2+200t)\right|_{0}^{6.25}+\left. (16t^2-200t)\right|_{6.25}^{10}}\\ | |
+ | &&\\ | ||
+ | & = & \displaystyle{-16(6.25)^2+200(6.25)+(16(10)^2-200(10))-(16(6.25)^2-200(6.25))}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{850}.\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | The particle travels <math style="vertical-align: -1px">850</math> feet. |
− | |||
− | |||
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 11:15, 9 April 2017
A particle moves along a straight line with velocity given by:
feet per second. Determine the total distance traveled by the particle
from time to time
Foundations: |
---|
1. How are the velocity function and the position function related? |
They are related by the equation |
2. If we calculate what are we calculating? |
We are calculating |
This is the displacement of the particle from to |
3. If we calculate what are we calculating? |
We are calculating the total distance traveled by the particle from to |
Solution:
Step 1: |
---|
To calculate the total distance the particle traveled from to |
we need to calculate |
Step 2: |
---|
We need to figure out when is positive and negative in the interval |
We set |
and solve for |
We get |
Then, we use test points to see that is positive from |
and negative from |
Step 3: |
---|
Therefore, we get |
|
Final Answer: |
---|
The particle travels feet. |