Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam"> This problem has three parts: |
| − | + | <span class="exam">(a) State the Fundamental Theorem of Calculus. | |
| − | + | <span class="exam">(b) Compute <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt.</math> | |
| − | |||
| + | <span class="exam">(c) Evaluate <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx.</math> | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |'''1.''' What does Part 1 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt?</math> |
|- | |- | ||
| | | | ||
| − | + | Part 1 of the Fundamental Theorem of Calculus says that | |
|- | |- | ||
| − | | | + | | <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math> |
| − | : | ||
|- | |- | ||
| − | | | + | |'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants? |
| − | |||
|- | |- | ||
| | | | ||
| − | + | Part 2 of the Fundamental Theorem of Calculus says that | |
|- | |- | ||
| − | | | + | | <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math> |
| − | :: | ||
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
'''(a)''' | '''(a)''' | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |The Fundamental Theorem of Calculus has two parts. |
| + | |- | ||
| + | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
| − | | | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> |
| − | ::<math> | + | |- |
| + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | ||
|} | |} | ||
| Line 45: | Line 46: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |'''The Fundamental Theorem of Calculus, Part 2''' |
|- | |- | ||
| − | | | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> |
| − | + | |- | |
| − | + | |Then, | |
| − | && | ||
| − | & = | ||
| − | |||
|- | |- | ||
| − | | | + | | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|} | |} | ||
'''(b)''' | '''(b)''' | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |Let <math style="vertical-align: | + | |Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt.</math> |
|- | |- | ||
| − | |The | + | |The problem is asking us to find <math style="vertical-align: -5px">F'(x).</math> |
|- | |- | ||
| − | | | + | |Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt.</math> |
| − | + | |- | |
| + | |Then, | ||
| + | |- | ||
| + | | <math style="vertical-align: -5px">F(x)=G(g(x)).</math> | ||
|} | |} | ||
| Line 72: | Line 74: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |If we take the derivative of both sides of the last equation, |
| + | |- | ||
| + | |we get | ||
| + | |- | ||
| + | | <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math> | ||
|- | |- | ||
| − | | | + | |by the Chain Rule. |
| − | ::<math> | + | |} |
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |Now, <math style="vertical-align: -5px">g'(x)=-\sin(x)</math> and <math style="vertical-align: -5px">G'(x)=\sin(x)</math> | ||
| + | |- | ||
| + | |by the '''Fundamental Theorem of Calculus, Part 1'''. | ||
| + | |- | ||
| + | |Since | ||
| + | |- | ||
| + | | <math style="vertical-align: -4px">G'(g(x))=\sin(g(x))=\sin(\cos(x)),</math> | ||
| + | |- | ||
| + | |we have | ||
| + | |- | ||
| + | | <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).</math> | ||
| + | |} | ||
| + | |||
| + | '''(c)''' | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 1: | ||
|- | |- | ||
| − | | | + | | Using the '''Fundamental Theorem of Calculus, Part 2''', we have |
|- | |- | ||
| − | | | + | | <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.</math> |
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2: | ||
|- | |- | ||
| − | | | + | |So, we get |
| − | + | |- | |
| + | | <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math> | ||
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' See solution above. |
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: -5px">\sin(\cos(x))\cdot(-\sin(x))</math> |
|- | |- | ||
| − | | | + | | '''(c)''' <math style="vertical-align: -3px">1</math> |
| − | |||
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 11:14, 9 April 2017
This problem has three parts:
(a) State the Fundamental Theorem of Calculus.
(b) Compute
(c) Evaluate
| Foundations: |
|---|
| 1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
Part 1 of the Fundamental Theorem of Calculus says that |
| 2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Part 2 of the Fundamental Theorem of Calculus says that |
| where is any antiderivative of |
Solution:
(a)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |
(b)
| Step 1: |
|---|
| Let |
| The problem is asking us to find |
| Let and |
| Then, |
| Step 2: |
|---|
| If we take the derivative of both sides of the last equation, |
| we get |
| by the Chain Rule. |
| Step 3: |
|---|
| Now, and |
| by the Fundamental Theorem of Calculus, Part 1. |
| Since |
| we have |
(c)
| Step 1: |
|---|
| Using the Fundamental Theorem of Calculus, Part 2, we have |
| Step 2: |
|---|
| So, we get |
| Final Answer: |
|---|
| (a) See solution above. |
| (b) |
| (c) |