Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
| Line 126: | Line 126: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>  is continuous. | + | | '''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>  is continuous. |
|- | |- | ||
| − | |'''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math> | + | | '''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math> |
|- | |- | ||
| | | | ||
Revision as of 14:13, 18 April 2016
Consider the following piecewise defined function:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \left\{ \begin{array}{lr} x+5 & \text{if }x < 3\\ 4\sqrt{x+1} & \text{if }x \geq 3 \end{array} \right. }
- a) Show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is continuous at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3.}
- b) Using the limit definition of the derivative, and computing the limits from both sides, show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3.}
| Foundations: |
|---|
| Recall: |
|
|
Solution:
(a)
| Step 1: |
|---|
| We first calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3^+}f(x).} We have |
|
| Step 2: |
|---|
| Now, we calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{-}}f(x).} We have |
|
| Step 3: |
|---|
| Now, we calculate We have |
|
|
| Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{+}}f(x)=\lim _{x\rightarrow 3^{-}}f(x)=f(3),~f(x)} is continuous. |
(b)
| Step 1: |
|---|
| We need to use the limit definition of derivative and calculate the limit from both sides. |
| So, we have |
|
| Step 2: |
|---|
| Now, we have |
|
| Step 3: |
|---|
| Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{h\rightarrow 0^{-}}{\frac {f(3+h)-f(3)}{h}}=\lim _{h\rightarrow 0^{+}}{\frac {f(3+h)-f(3)}{h}},} |
| is differentiable at Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=3.} |
| Final Answer: |
|---|
| (a) Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{+}}f(x)=\lim _{x\rightarrow 3^{-}}f(x)=f(3),~f(x)} is continuous. |
| (b) Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{h\rightarrow 0^{-}}{\frac {f(3+h)-f(3)}{h}}=\lim _{h\rightarrow 0^{+}}{\frac {f(3+h)-f(3)}{h}},} |
|