Difference between revisions of "009B Sample Final 1, Problem 2"
Jump to navigation
Jump to search
| Line 110: | Line 110: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' <math>f(x)=-\cos(x^2)+\cos(1)</math> | + | | '''(a)''' <math>f(x)=-\cos(x^2)+\cos(1)</math> |
|- | |- | ||
| − | |'''(b)''' <math>f'(x)=\sin(x^2)2x</math> | + | | '''(b)''' <math>f'(x)=\sin(x^2)2x</math> |
|- | |- | ||
| − | |'''(c)''' '''<u>The Fundamental Theorem of Calculus, Part 1</u>''' | + | | '''(c)''' '''<u>The Fundamental Theorem of Calculus, Part 1</u>''' |
|- | |- | ||
| Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. | | Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. | ||
| Line 120: | Line 120: | ||
| Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>. | | Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>. | ||
|- | |- | ||
| − | |'''<u>The Fundamental Theorem of Calculus, Part 2</u>''' | + | | '''<u>The Fundamental Theorem of Calculus, Part 2</u>''' |
|- | |- | ||
| Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>. | | Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>. | ||
| Line 126: | Line 126: | ||
| Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. | | Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. | ||
|- | |- | ||
| − | |'''(d)''' <math style="vertical-align: -5px">\sin(x^2)2x</math> | + | | '''(d)''' <math style="vertical-align: -5px">\sin(x^2)2x</math> |
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 14:10, 18 April 2016
We would like to evaluate
- a) Compute
- b) Find
- c) State the Fundamental Theorem of Calculus.
- d) Use the Fundamental Theorem of Calculus to compute without first computing the integral.
- d) Use the Fundamental Theorem of Calculus to compute without first computing the integral.
| Foundations: |
|---|
| How would you integrate |
|
|
Solution:
(a)
| Step 1: |
|---|
| We proceed using -substitution. Let Then, |
| Since this is a definite integral, we need to change the bounds of integration. |
| Plugging our values into the equation we get and |
| Step 2: |
|---|
| So, we have |
|
|
(b)
| Step 1: |
|---|
| From part (a), we have |
| Step 2: |
|---|
| If we take the derivative, we get since is just a constant. |
(c)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
|
|
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
|
|
| (d) |
|---|
| By the Fundamental Theorem of Calculus, Part 1, |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let . |
| Then, is a differentiable function on and . |
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of . |
| Then, . |
| (d) |