Difference between revisions of "009B Sample Midterm 1, Problem 5"
Jump to navigation
Jump to search
Line 91: | Line 91: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math style="vertical-align: -2px">-2</math> | + | | '''(a)''' <math style="vertical-align: -2px">-2</math> |
|- | |- | ||
− | |'''(b)''' <math style="vertical-align: -2px">-11</math> | + | | '''(b)''' <math style="vertical-align: -2px">-11</math> |
|- | |- | ||
− | |'''(c)''' <math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}\bigg(1-\bigg(i\frac{3}{n}\bigg)^2\bigg)</math> | + | | '''(c)''' <math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}\bigg(1-\bigg(i\frac{3}{n}\bigg)^2\bigg)</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 14:08, 18 April 2016
Let .
- a) Compute the left-hand Riemann sum approximation of with boxes.
- b) Compute the right-hand Riemann sum approximation of with boxes.
- c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Foundations: |
---|
Recall: |
|
|
|
Solution:
(a)
Step 1: |
---|
Since our interval is and we are using rectangles, each rectangle has width So, the left-hand Riemann sum is |
|
Step 2: |
---|
Thus, the left-hand Riemann sum is |
(b)
Step 1: |
---|
Since our interval is and we are using rectangles, each rectangle has width So, the right-hand Riemann sum is |
|
Step 2: |
---|
Thus, the right-hand Riemann sum is |
|
(c)
Step 1: |
---|
Let be the number of rectangles used in the right-hand Riemann sum for |
The width of each rectangle is |
|
Step 2: |
---|
So, the right-hand Riemann sum is |
|
Finally, we let go to infinity to get a limit. |
Thus, is equal to |
|
Final Answer: |
---|
(a) |
(b) |
(c) |