Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 91: Line 91:
 
!Final Answer:    
 
!Final Answer:    
 
|-
 
|-
|'''(a)''' &nbsp;<math style="vertical-align: -2px">-2</math>  
+
|&nbsp;&nbsp; '''(a)''' &nbsp;<math style="vertical-align: -2px">-2</math>  
 
|-
 
|-
|'''(b)''' &nbsp;<math style="vertical-align: -2px">-11</math>
+
|&nbsp;&nbsp; '''(b)''' &nbsp;<math style="vertical-align: -2px">-11</math>
 
|-
 
|-
|'''(c)''' &nbsp;<math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}\bigg(1-\bigg(i\frac{3}{n}\bigg)^2\bigg)</math>
+
|&nbsp;&nbsp; '''(c)''' &nbsp;<math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}\bigg(1-\bigg(i\frac{3}{n}\bigg)^2\bigg)</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:08, 18 April 2016

Let .

a) Compute the left-hand Riemann sum approximation of with boxes.
b) Compute the right-hand Riemann sum approximation of with boxes.
c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Foundations:  
Recall:
1. The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
2. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
3. See the page on Riemann Sums for more information.

Solution:

(a)

Step 1:  
Since our interval is and we are using rectangles, each rectangle has width So, the left-hand Riemann sum is
Step 2:  
Thus, the left-hand Riemann sum is
  

(b)

Step 1:  
Since our interval is and we are using rectangles, each rectangle has width So, the right-hand Riemann sum is
Step 2:  
Thus, the right-hand Riemann sum is

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for
The width of each rectangle is
Step 2:  
So, the right-hand Riemann sum is
Finally, we let go to infinity to get a limit.
Thus, is equal to
Final Answer:  
   (a)  
   (b)  
   (c)  

Return to Sample Exam