Difference between revisions of "009B Sample Midterm 1, Problem 2"
Jump to navigation
Jump to search
| Line 10: | Line 10: | ||
|- | |- | ||
| | | | ||
| − | ::<math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math> | + | ::<math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math> |
|} | |} | ||
| Line 20: | Line 20: | ||
|- | |- | ||
| | | | ||
| − | ::<math | + | ::<math>\begin{array}{rcl} |
| + | \displaystyle{f_{\text{avg}}} & = & \displaystyle{\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int_0^2 x^3(1+x^2)^4~dx.}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 26: | Line 30: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2</math> | + | |Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2.</math> Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx.</math> Also, <math style="vertical-align: 0px">x^2=u-1.</math> |
|- | |- | ||
| − | |We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math> | + | |We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5.</math> |
|- | |- | ||
| − | |So, the integral becomes <math | + | |So, the integral becomes |
| + | |- | ||
| + | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{f_{\text{avg}}} & = & \displaystyle{\int_0^2 x\cdot x^2 (1+x^2)^4~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{2}\int_1^5(u-1)u^4~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{2}\int_1^5(u^5-u^4)~du.}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 38: | Line 51: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
| − | | | + | | |
| − | + | ::<math>\begin{array}{rcl} | |
| − | + | \displaystyle{f_{\text{avg}}} & = & \displaystyle{\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5}\\ | |
| − | + | &&\\ | |
| − | + | & = & \displaystyle{\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.}\\ | |
| + | \end{array}</math> | ||
|} | |} | ||
| Line 50: | Line 64: | ||
|We evaluate to get | |We evaluate to get | ||
|- | |- | ||
| − | | | + | | |
| − | + | ::<math>\begin{array}{rcl} | |
| − | + | \displaystyle{f_{\text{avg}}} & = & \displaystyle{5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)}\\ | |
| − | + | &&\\ | |
| − | + | & = & \displaystyle{3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}}\\ | |
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{59376}{60}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{4948}{5}.}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
Revision as of 12:58, 18 April 2016
Find the average value of the function on the given interval.
| Foundations: |
|---|
| The average value of a function on an interval is given by |
|
|
Solution:
| Step 1: |
|---|
| Using the formula given in Foundations, we have: |
|
|
| Step 2: |
|---|
| Now, we use -substitution. Let Then, and Also, |
| We need to change the bounds on the integral. We have and |
| So, the integral becomes |
|
|
| Step 3: |
|---|
| We integrate to get |
|
|
| Step 4: |
|---|
| We evaluate to get |
|
|
| Final Answer: |
|---|