Difference between revisions of "009B Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
::::::<math>y=1-x^2,~~~0\leq x \leq 1</math> | ::::::<math>y=1-x^2,~~~0\leq x \leq 1</math> | ||
− | ::<span class="exam">is rotated about the <math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface. | + | :::<span class="exam">is rotated about the <math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 12:25, 18 April 2016
- a) Find the length of the curve
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}.}
- b) The curve
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1-x^2,~~~0\leq x \leq 1}
- is rotated about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis. Find the area of the resulting surface.
Foundations: |
---|
Recall: |
|
|
|
|
|
Solution:
(a)
Step 1: |
---|
First, we calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}.} |
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\ln (\cos x),} |
|
Using the formula given in the Foundations section, we have |
|
Step 2: |
---|
Now, we have: |
|
Step 3: |
---|
Finally, |
|
(b)
Step 1: |
---|
We start by calculating Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}.} |
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1-x^2,~ \frac{dy}{dx}=-2x.} |
Using the formula given in the Foundations section, we have |
|
Step 2: |
---|
Now, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.} |
We proceed by using trig substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{1}{2}\tan \theta.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=\frac{1}{2}\sec^2\theta \,d\theta.} |
So, we have |
|
Step 3: |
---|
Now, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sec \theta.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\sec \theta \tan \theta \,d\theta.} |
So, the integral becomes |
|
Step 4: |
---|
We started with a definite integral. So, using Step 2 and 3, we have |
|
Final Answer: |
---|
(a) |
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{6}(5\sqrt{5}-1)} |