Difference between revisions of "009B Sample Final 1, Problem 7"

From Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
::<span class="exam">a) Find the length of the curve
 
::<span class="exam">a) Find the length of the curve
  
::::::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}</math>.
+
::::::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}.</math>
  
 
::<span class="exam">b) The curve
 
::<span class="exam">b) The curve
Line 14: Line 14:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' The formula for the length <math style="vertical-align: 0px">L</math> of a curve <math style="vertical-align: -5px">y=f(x)</math> where <math style="vertical-align: -3px">a\leq x \leq b</math> is  
+
|
 +
::'''1.''' The formula for the length <math style="vertical-align: 0px">L</math> of a curve <math style="vertical-align: -5px">y=f(x)</math> where <math style="vertical-align: -3px">a\leq x \leq b</math> is  
 
|-
 
|-
 
|
 
|
::<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math>  
+
:::<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math>  
 
|-
 
|-
|'''2.''' <math style="vertical-align: -14px">\int \sec x~dx=\ln|\sec(x)+\tan(x)|+C.</math>
+
|
 +
::'''2.''' <math style="vertical-align: -14px">\int \sec x~dx=\ln|\sec(x)+\tan(x)|+C.</math>
 
|-
 
|-
|'''3.''' The surface area <math style="vertical-align: 0px">S</math> of a function <math style="vertical-align: -5px">y=f(x)</math> rotated about the <math style="vertical-align: -4px">y</math>-axis is given by  
+
|
 +
::'''3.''' The surface area <math style="vertical-align: 0px">S</math> of a function <math style="vertical-align: -5px">y=f(x)</math> rotated about the <math style="vertical-align: -4px">y</math>-axis is given by  
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -13px">S=\int 2\pi x\,ds</math>, where <math style="vertical-align: -18px">ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}.</math>
+
:::<math style="vertical-align: -13px">S=\int 2\pi x\,ds</math>, where <math style="vertical-align: -18px">ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}.</math>
 
|}
 
|}
  
Line 36: Line 39:
 
|First, we calculate&thinsp; <math>\frac{dy}{dx}.</math>  
 
|First, we calculate&thinsp; <math>\frac{dy}{dx}.</math>  
 
|-
 
|-
|Since <math style="vertical-align: -12px">y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x</math>.
+
|Since <math style="vertical-align: -5px">y=\ln (\cos x),</math>
 +
|-
 +
|
 +
::<math>\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x.</math>
 
|-
 
|-
 
|Using the formula given in the Foundations section, we have
 
|Using the formula given in the Foundations section, we have
 
|-
 
|-
 
|
 
|
::<math>L=\int_0^{\pi/3} \sqrt{1+(-\tan x)^2}~dx</math>.
+
::<math>L=\int_0^{\pi/3} \sqrt{1+(-\tan x)^2}~dx.</math>
 
|}
 
|}
  
Line 76: Line 82:
 
& = & \displaystyle{\ln (2+\sqrt{3})}.
 
& = & \displaystyle{\ln (2+\sqrt{3})}.
 
\end{array}</math>
 
\end{array}</math>
|-
 
|
 
 
|}
 
|}
  
Line 85: Line 89:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We start by calculating&thinsp; <math>\frac{dy}{dx}</math>&thinsp;.
+
|We start by calculating&thinsp; <math>\frac{dy}{dx}.</math>  
 
|-
 
|-
|Since <math style="vertical-align: -13px">y=1-x^2,~ \frac{dy}{dx}=-2x</math>.
+
|Since <math style="vertical-align: -13px">y=1-x^2,~ \frac{dy}{dx}=-2x.</math>
 
|-
 
|-
 
|Using the formula given in the Foundations section, we have
 
|Using the formula given in the Foundations section, we have
Line 100: Line 104:
 
|Now, we have <math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.</math>
 
|Now, we have <math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.</math>
 
|-
 
|-
|We proceed by using trig substitution. Let <math style="vertical-align: -13px">x=\frac{1}{2}\tan \theta</math>. Then, <math style="vertical-align:  -12px">dx=\frac{1}{2}\sec^2\theta \,d\theta</math>.
+
|We proceed by using trig substitution. Let <math style="vertical-align: -13px">x=\frac{1}{2}\tan \theta.</math> Then, <math style="vertical-align:  -12px">dx=\frac{1}{2}\sec^2\theta \,d\theta.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 115: Line 119:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=\sec \theta</math>. Then, <math style="vertical-align: -1px">du=\sec \theta \tan \theta \,d\theta</math>.
+
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=\sec \theta.</math> Then, <math style="vertical-align: -1px">du=\sec \theta \tan \theta \,d\theta.</math>
 
|-
 
|-
 
|So, the integral becomes
 
|So, the integral becomes

Revision as of 12:24, 18 April 2016

a) Find the length of the curve
b) The curve
is rotated about the -axis. Find the area of the resulting surface.
Foundations:  
Recall:
1. The formula for the length of a curve where is
2.
3. The surface area of a function rotated about the -axis is given by
, where

Solution:

(a)

Step 1:  
First, we calculate 
Since
Using the formula given in the Foundations section, we have
Step 2:  
Now, we have:
Step 3:  
Finally,

(b)

Step 1:  
We start by calculating 
Since
Using the formula given in the Foundations section, we have
Step 2:  
Now, we have
We proceed by using trig substitution. Let Then,
So, we have
Step 3:  
Now, we use -substitution. Let Then,
So, the integral becomes
Step 4:  
We started with a definite integral. So, using Step 2 and 3, we have
Final Answer:  
(a)  
(b)  

Return to Sample Exam