Difference between revisions of "009B Sample Final 1, Problem 7"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">a) Find the length of the curve ::::::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}</math>. <span class="exam">b) The curve ::::::<math>y=1-x^2,~~~0...")
 
Line 1: Line 1:
<span class="exam">a) Find the length of the curve
+
::<span class="exam">a) Find the length of the curve
  
 
::::::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}</math>.
 
::::::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}</math>.
  
<span class="exam">b) The curve
+
::<span class="exam">b) The curve
  
 
::::::<math>y=1-x^2,~~~0\leq x \leq 1</math>
 
::::::<math>y=1-x^2,~~~0\leq x \leq 1</math>
  
<span class="exam">is rotated about the <math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface.
+
::<span class="exam">is rotated about the <math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 12:20, 18 April 2016

a) Find the length of the curve
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}} .
b) The curve
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1-x^2,~~~0\leq x \leq 1}
is rotated about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis. Find the area of the resulting surface.
Foundations:  
Recall:
1. The formula for the length Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} of a curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\leq x \leq b} is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.}
2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sec x~dx=\ln|\sec(x)+\tan(x)|+C.}
3. The surface area Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} of a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} rotated about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis is given by
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int 2\pi x\,ds} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}.}

Solution:

(a)

Step 1:  
First, we calculate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}.}
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x} .
Using the formula given in the Foundations section, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_0^{\pi/3} \sqrt{1+(-\tan x)^2}~dx} .
Step 2:  
Now, we have:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} L & = & \displaystyle{\int_0^{\pi/3} \sqrt{1+\tan^2 x}~dx}\\ &&\\ & = & \displaystyle{\int_0^{\pi/3} \sqrt{\sec^2x}~dx}\\ &&\\ & = & \displaystyle{\int_0^{\pi/3} \sec x ~dx}.\\ \end{array}}
Step 3:  
Finally,

(b)

Step 1:  
We start by calculating  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}}  .
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1-x^2,~ \frac{dy}{dx}=-2x} .
Using the formula given in the Foundations section, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\,=\,\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx.}
Step 2:  
Now, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.}
We proceed by using trig substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{1}{2}\tan \theta} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=\frac{1}{2}\sec^2\theta \,d\theta} .
So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\ &&\\ & = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}.\\ \end{array}}
Step 3:  
Now, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sec \theta} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\sec \theta \tan \theta \,d\theta} .
So, the integral becomes
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int \frac{\pi}{2}u^2du}\\ &&\\ & = & \displaystyle{\frac{\pi}{6}u^3+C}\\ &&\\ & = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\ &&\\ & = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}.\\ \end{array}}
Step 4:  
We started with a definite integral. So, using Step 2 and 3, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} S & = & \displaystyle{\int_0^1 2\pi x \sqrt{1+4x^2}~dx}\\ &&\\ & = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3}\bigg|_0^1\\ &&\\ & = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\ &&\\ & = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}.\\ \end{array}}
Final Answer:  
(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln (2+\sqrt{3})}
(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{6}(5\sqrt{5}-1)}

Return to Sample Exam