Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Compute the following integrals. <span class="exam">a) <math>\int e^x(x+\sin(e^x))~dx</math> <span class="exam">b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</m...") |
|||
| Line 1: | Line 1: | ||
<span class="exam"> Compute the following integrals. | <span class="exam"> Compute the following integrals. | ||
| − | <span class="exam">a) <math>\int e^x(x+\sin(e^x))~dx</math> | + | ::<span class="exam">a) <math>\int e^x(x+\sin(e^x))~dx</math> |
| − | <span class="exam">b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math> | + | ::<span class="exam">b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math> |
| − | <span class="exam">c) <math>\int \sin^3x~dx</math> | + | ::<span class="exam">c) <math>\int \sin^3x~dx</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 12: | Line 12: | ||
|Recall: | |Recall: | ||
|- | |- | ||
| − | |'''1.''' Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int v~du</math> | + | | |
| + | ::'''1.''' Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math> | ||
|- | |- | ||
| − | |'''2.''' Through partial fraction decomposition, we can write the fraction <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> | + | | |
| + | ::'''2.''' Through partial fraction decomposition, we can write the fraction <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> | ||
|- | |- | ||
| − | |'''3.''' We have the Pythagorean identity <math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x)</math> | + | | |
| + | :::for some constants <math style="vertical-align: -4px">A,B.</math> | ||
| + | |- | ||
| + | | | ||
| + | ::'''3.''' We have the Pythagorean identity <math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x).</math> | ||
|} | |} | ||
| Line 33: | Line 39: | ||
|Now, for the first integral on the right hand side of the last equation, we use integration by parts. | |Now, for the first integral on the right hand side of the last equation, we use integration by parts. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx</math> | + | |Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
| Line 50: | Line 56: | ||
|Now, for the one remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | |Now, for the one remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: 0px">u=e^x</math> | + | |Let <math style="vertical-align: 0px">u=e^x.</math> Then, <math style="vertical-align: 0px">du=e^xdx.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
| Line 88: | Line 94: | ||
|Now, we need to use partial fraction decomposition for the second integral. | |Now, we need to use partial fraction decomposition for the second integral. | ||
|- | |- | ||
| − | |Since <math style="vertical-align: -5px">2x^2+x=x(2x+1)</math> | + | |Since <math style="vertical-align: -5px">2x^2+x=x(2x+1),</math> we let |
| + | |- | ||
| + | | | ||
| + | ::<math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}.</math> | ||
| + | |- | ||
| + | |Multiplying both sides of the last equation by <math style="vertical-align: -5px">x(2x+1),</math> we get | ||
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -5px">1-x=A(2x+1)+Bx.</math> | ||
|- | |- | ||
| − | | | + | |If we let <math style="vertical-align: 0px">x=0</math>, the last equation becomes |
|- | |- | ||
| − | | | + | | |
| + | ::<math style="vertical-align: -1px">1=A.</math> | ||
|- | |- | ||
| − | |If we let <math style="vertical-align: | + | |If we let <math style="vertical-align: -14px">x=-\frac{1}{2},</math> then we get  <math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B.</math> Thus, |
|- | |- | ||
| − | | | + | | |
| + | ::<math style="vertical-align: 0px">B=-3.</math> | ||
|- | |- | ||
| − | |So, in summation, we have  <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math> | + | |So, in summation, we have  |
| + | |- | ||
| + | | | ||
| + | ::<math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}.</math> | ||
|} | |} | ||
| Line 119: | Line 138: | ||
|For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | |For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -2px">u=2x+1</math> | + | |Let <math style="vertical-align: -2px">u=2x+1.</math> Then, <math style="vertical-align: 0px">du=2\,dx</math> and  <math style="vertical-align: -14px">\frac{du}{2}=dx.</math> |
|- | |- | ||
|Thus, our final integral becomes | |Thus, our final integral becomes | ||
| Line 143: | Line 162: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math> | + | |First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx.</math> |
|- | |- | ||
| − | |Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math> | + | |Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get |
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> | ||
|- | |- | ||
|If we use this identity, we have | |If we use this identity, we have | ||
|- | |- | ||
| − | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math> | + | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx.</math> |
| − | |||
| − | |||
|} | |} | ||
| Line 157: | Line 177: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we proceed by <math>u</math>-substitution. Let <math>u=\cos x</math> | + | |Now, we proceed by <math>u</math>-substitution. Let <math>u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x dx.</math> |
|- | |- | ||
|So we have | |So we have | ||
Revision as of 12:03, 18 April 2016
Compute the following integrals.
- a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x(x+\sin(e^x))~dx}
- b)
- c)
| Foundations: |
|---|
| Recall: |
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We first distribute to get |
|
| Now, for the first integral on the right hand side of the last equation, we use integration by parts. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^xdx.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x.} |
| So, we have |
|
| Step 2: |
|---|
| Now, for the one remaining integral, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=e^x.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=e^xdx.} |
| So, we have |
|
(b)
| Step 1: |
|---|
| First, we add and subtract Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} from the numerator. |
| So, we have |
|
| Step 2: |
|---|
| Now, we need to use partial fraction decomposition for the second integral. |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x^2+x=x(2x+1),} we let |
|
| Multiplying both sides of the last equation by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(2x+1),} we get |
|
| If we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} , the last equation becomes |
|
| If we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-\frac{1}{2},} then we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{2}=-\frac{1}{2}\,B.} Thus, |
|
| So, in summation, we have |
|
| Step 3: |
|---|
| If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
|
| Step 4: |
|---|
| For the final remaining integral, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2x+1.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2\,dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{2}=dx.} |
| Thus, our final integral becomes |
|
| Therefore, the final answer is |
|
(c)
| Step 1: |
|---|
| First, we write Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x~dx=\int \sin^2 x \sin x~dx.} |
| Using the identity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1} , we get |
|
| If we use this identity, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx.} |
| Step 2: |
|---|
| Now, we proceed by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos x.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin x dx.} |
| So we have |
|
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xe^x-e^x-\cos(e^x)+C} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+\ln x-\frac{3}{2}\ln (2x+1) +C} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\cos x+\frac{\cos^3x}{3}+C} |