Difference between revisions of "009B Sample Final 1, Problem 3"

From Math Wiki
Jump to navigation Jump to search
(Undo revision 1239 by MathAdmin (talk))
Line 2: Line 2:
 
::::::<math>y=\sin x</math> and <math style="vertical-align: -13px">y=\frac{2}{\pi}x.</math>
 
::::::<math>y=\sin x</math> and <math style="vertical-align: -13px">y=\frac{2}{\pi}x.</math>
  
<span class="exam">a) Find the three intersection points of the two given functions. (Drawing may be helpful.)
+
::<span class="exam">a) Find the three intersection points of the two given functions. (Drawing may be helpful.)
  
<span class="exam">b) Find the area bounded by the two functions.
+
::<span class="exam">b) Find the area bounded by the two functions.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 11: Line 11:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math>
+
|
 +
::'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math>
 
|-
 
|-
 
|
 
|
::by setting <math style="vertical-align: -5px">f(x)=g(x)</math> and solving for <math style="vertical-align: 0px">x</math>.
+
:::by setting <math style="vertical-align: -5px">f(x)=g(x)</math> and solving for <math style="vertical-align: 0px">x.</math>
 
|-
 
|-
|'''2.''' The area between two functions, <math style="vertical-align: -5px">f(x)</math> and <math style="vertical-align: -5px">g(x)</math>, is given by <math>\int_a^b f(x)-g(x)~dx</math>  
+
|
 +
::'''2.''' The area between two functions, <math style="vertical-align: -5px">f(x)</math> and <math style="vertical-align: -5px">g(x),</math> is given by <math>\int_a^b f(x)-g(x)~dx</math>  
 
|-
 
|-
 
|
 
|
::for <math style="vertical-align: -3px">a\leq x\leq b</math>, where <math style="vertical-align: -5px">f(x)</math> is the upper function and <math style="vertical-align: -5px">g(x)</math> is the lower function.  
+
:::for <math style="vertical-align: -3px">a\leq x\leq b,</math> where <math style="vertical-align: -5px">f(x)</math> is the upper function and <math style="vertical-align: -5px">g(x)</math> is the lower function.  
 
|}
 
|}
  
Line 37: Line 39:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Setting <math style="vertical-align: -14px">\sin x=\frac{2}{\pi}x</math>, we get three solutions: <math>x=0,\frac{\pi}{2},\frac{-\pi}{2}.</math>
+
|Setting <math style="vertical-align: -14px">\sin x=\frac{2}{\pi}x,</math> we get three solutions:
 +
|-
 +
|
 +
::<math>x=0,\frac{\pi}{2},\frac{-\pi}{2}.</math>
 
|-
 
|-
|So, the three intersection points are <math style="vertical-align: -15px">(0,0),\bigg(\frac{\pi}{2},1\bigg),\bigg(\frac{-\pi}{2},-1\bigg)</math>.
+
|So, the three intersection points are <math style="vertical-align: -15px">(0,0),\bigg(\frac{\pi}{2},1\bigg),\bigg(\frac{-\pi}{2},-1\bigg).</math>
 
|-
 
|-
 
|You can see these intersection points on the graph shown in Step 1.
 
|You can see these intersection points on the graph shown in Step 1.

Revision as of 11:54, 18 April 2016

Consider the area bounded by the following two functions:

and
a) Find the three intersection points of the two given functions. (Drawing may be helpful.)
b) Find the area bounded by the two functions.
Foundations:  
Recall:
1. You can find the intersection points of two functions, say
by setting and solving for
2. The area between two functions, and is given by
for where is the upper function and is the lower function.

Solution:

(a)

Step 1:  
First, we graph these two functions.
9BF1 3 GP.png
Step 2:  
Setting we get three solutions:
So, the three intersection points are
You can see these intersection points on the graph shown in Step 1.

(b)

Step 1:  
Using symmetry of the graph, the area bounded by the two functions is given by
Step 2:  
Lastly, we integrate to get
Final Answer:  
(a)  
(b)  

Return to Sample Exam