Difference between revisions of "009B Sample Final 1, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' The height of each rectangle in the lower Riemann sum is given by choosing the minimum <math style="vertical-align: -5px">y</math> value of the left and right endpoints of the rectangle.
+
|
 +
::'''1.''' The height of each rectangle in the lower Riemann sum is given by choosing the minimum
 +
|-
 +
|
 +
:::<math style="vertical-align: -5px">y</math> value of the left and right endpoints of the rectangle.
 +
|-
 +
|
 +
::'''2.''' The height of each rectangle in the upper Riemann sum is given by choosing the maximum
 
|-
 
|-
|'''2.''' The height of each rectangle in the upper Riemann sum is given by choosing the maximum <math style="vertical-align: -5px">y</math> value of the left and right endpoints of the rectangle.
+
|
 +
:::<math style="vertical-align: -5px">y</math> value of the left and right endpoints of the rectangle.
 
|-
 
|-
|'''3.''' The area of the region is given by <math style="vertical-align: -14px">\int_a^b y~dx</math> for appropriate values <math style="vertical-align: -4px">a,b</math>.
+
|
 +
::'''3.''' The area of the region is given by <math style="vertical-align: -14px">\int_a^b y~dx</math> for appropriate values <math style="vertical-align: -4px">a,b.</math>
 
|}
 
|}
  
Line 29: Line 38:
 
|We need to set these two equations equal in order to find the intersection points of these functions.
 
|We need to set these two equations equal in order to find the intersection points of these functions.
 
|-
 
|-
|So, we let <math style="vertical-align: -5px">2(-x^2+9)=0</math>. Solving for <math style="vertical-align: 0px">x</math>, we get <math style="vertical-align: 0px">x=\pm 3</math>.
+
|So, we let  
 
|-
 
|-
|This means that we need to calculate the Riemann sums over the interval <math style="vertical-align: -5px">[-3,3]</math>.
+
|
 +
::<math style="vertical-align: -5px">2(-x^2+9)=0.</math>  
 
|-
 
|-
|
+
|Solving for <math style="vertical-align: 0px">x,</math> we get <math style="vertical-align: 0px">x=\pm 3.</math>
 +
|-
 +
|This means that we need to calculate the Riemann sums over the interval <math style="vertical-align: -5px">[-3,3].</math>
 
|}
 
|}
  
Line 41: Line 53:
 
|Since the length of our interval is <math style="vertical-align: 0px">6</math> and we are using <math style="vertical-align: 0px">3</math> rectangles,
 
|Since the length of our interval is <math style="vertical-align: 0px">6</math> and we are using <math style="vertical-align: 0px">3</math> rectangles,
 
|-
 
|-
|each rectangle will have width <math style="vertical-align: 0px">2</math>&thinsp;.
+
|each rectangle will have width <math style="vertical-align: 0px">2.</math>&thinsp;  
 
|-
 
|-
 
|Thus, the lower Riemann sum is
 
|Thus, the lower Riemann sum is
Line 56: Line 68:
 
|As in Part (a), the length of our inteval is <math style="vertical-align: 0px">6</math> and  
 
|As in Part (a), the length of our inteval is <math style="vertical-align: 0px">6</math> and  
 
|-
 
|-
|each rectangle will have width <math style="vertical-align: 0px">2</math>. (See Step 1 and 2 for '''(a)''')
+
|each rectangle will have width <math style="vertical-align: 0px">2.</math> (See Step 1 and 2 for '''(a)''')
 
|}
 
|}
  

Revision as of 11:42, 18 April 2016

Consider the region bounded by the following two functions:

and
a) Using the lower sum with three rectangles having equal width, approximate the area.
b) Using the upper sum with three rectangles having equal width, approximate the area.
c) Find the actual area of the region.
Foundations:  
Recall:
1. The height of each rectangle in the lower Riemann sum is given by choosing the minimum
value of the left and right endpoints of the rectangle.
2. The height of each rectangle in the upper Riemann sum is given by choosing the maximum
value of the left and right endpoints of the rectangle.
3. The area of the region is given by for appropriate values

Solution:

(a)

Step 1:  
We need to set these two equations equal in order to find the intersection points of these functions.
So, we let
Solving for we get
This means that we need to calculate the Riemann sums over the interval
Step 2:  
Since the length of our interval is and we are using rectangles,
each rectangle will have width
Thus, the lower Riemann sum is

(b)

Step 1:  
As in Part (a), the length of our inteval is and
each rectangle will have width (See Step 1 and 2 for (a))
Step 2:  
Thus, the upper Riemann sum is

(c)

Step 1:  
To find the actual area of the region, we need to calculate
Step 2:  
We integrate to get
Final Answer:  
(a)  
(b)  
(c)  

Return to Sample Exam

9BF1 1 GP.png