Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Line 17: | Line 17: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' <math style="vertical-align: -5px">f(x)</math>  is continuous at <math style="vertical-align: 0px">x=a</math>  if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math> | + | | |
+ | ::'''1.''' <math style="vertical-align: -5px">f(x)</math>  is continuous at <math style="vertical-align: 0px">x=a</math>  if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math> | ||
|- | |- | ||
− | |'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math>  is  <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}.</math> | + | | |
+ | ::'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math>  is  <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}.</math> | ||
|} | |} | ||
Revision as of 11:29, 18 April 2016
Consider the following piecewise defined function:
- a) Show that is continuous at
- b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at
Foundations: |
---|
Recall: |
|
|
Solution:
(a)
Step 1: |
---|
We first calculate We have |
|
Step 2: |
---|
Now, we calculate We have |
|
Step 3: |
---|
Now, we calculate We have |
|
Since is continuous. |
(b)
Step 1: |
---|
We need to use the limit definition of derivative and calculate the limit from both sides. |
So, we have |
|
Step 2: |
---|
Now, we have |
|
Step 3: |
---|
Since |
is differentiable at |
Final Answer: |
---|
(a) Since is continuous. |
(b) Since |
|